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ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a rapidly
progressive neurodegenerative disorder of the motor
neurons in the motor cortex, brainstem and spinal cord.
A combination of upper and lower motor neuron
dysfunction comprises the clinical ALS phenotype.
Although the ALS phenotype was first observed by
Charcot over 100 years ago, the site of ALS onset and
the pathophysiological mechanisms underlying the
development of motor neuron degeneration remain to be
elucidated. Transcranial magnetic stimulation (TMS)
enables non-invasive assessment of the functional
integrity of the motor cortex and its corticomotoneuronal
projections. To date, TMS studies have established motor
cortical and corticospinal dysfunction in ALS, with
cortical hyperexcitability being an early feature in
sporadic forms of ALS and preceding the clinical onset of
familial ALS. Taken together, a central origin of ALS is
supported by TMS studies, with an anterograde
transsynaptic mechanism implicated in ALS pathogenesis.
Of further relevance, TMS techniques reliably distinguish
ALS from mimic disorders, despite a compatible
peripheral disease burden, thereby suggesting a potential
diagnostic utility of TMS in ALS. This review will focus
on the mechanisms underlying the generation of TMS
measures used in assessment of cortical excitability, the
contribution of TMS in enhancing the understanding of
ALS pathophysiology and the potential diagnostic utility
of TMS techniques in ALS.

INTRODUCTION
The term amyotrophic lateral sclerosis (ALS) was
first coined by Charcot, who postulated the
primacy of the upper motor neuron (UMN) in ALS
pathogenesis.1 Assessment of cortical function in
ALS and identification of the characteristic clinical
phenotype involving combined upper and lower
motor neuron abnormalities remain the key for
ALS diagnosis.2–4 However, despite Charcot’s
initial observations, the site of disease onset and
mechanisms underlying ALS pathophysiology
remain areas of intense study and debate.5 In this
setting, assessment of motor cortical and corticosp-
inal function using non-invasive techniques, such as
transcranial magnetic stimulation (TMS), has
enhanced our understanding of ALS pathophysi-
ology and resulted in novel diagnostic approaches.
Single-, paired- and multiple-pulse TMS techni-

ques have all been used (figure 1) with the follow-
ing measures taken to reflect corticomotoneuronal
function: motor threshold (MT), motor evoked
potential (MEP) amplitude, central motor conduc-
tion time (CMCT), cortical silent period (CSP),

intracortical inhibition and facilitation. The present
review will focus on the mechanisms underlying
the generation of these TMS measures, while at the
same time assessing the contributions TMS has
made in the understanding of ALS pathophysiology.
With an eye towards the future, the review will also
consider the potential diagnostic utility of TMS in
ALS and incorporation of TMS as a disease bio-
marker in the assessment of neuroprotective medi-
cations in a clinical trial setting.

BACKGROUND TMS TERMINOLOGY AND
PATHOPHYSIOLOGY
MT reflects the ease with which corticomotoneur-
ons are excited and is proposed to be assessed
by the International Federation of Clinical
Neurophysiology as the minimum stimulus intensity
required to elicit a small (usually >50 μV) MEP in
the target muscle in 50% of trials.6 With the recent
adaptation of threshold tracking techniques, MTcan
also be measured as the stimulus intensity required
to elicit and maintain a target MEP response of
0.2 mV.7–9 MT reflects the density of corticomoto-
neuronal projections onto the spinal motor neuron
with the highest density of projections to intrinsic
hand muscles having the lowest MTs.10–12 MTs are
lower in the dominant hand12 and correlate with
the ability to perform fine (fractionated) finger
tasks,13 so that MT has the potential to map cortico-
motoneuronal representation and function.
As well as reflecting the density of corticomoto-

neuronal projections, MTs may also be a biomarker
of cortical neuronal membrane excitability.14–16

MTs are influenced by the glutamatergic neuro-
transmitter system, through α-amino-3-hydroxy-5-
methyl-4-isoxazoleproprionic acid (AMPA) receptors,
whereby excessive glutamate activity reduces MTs.17

In contrast, pharmacological blockade of voltage-
gated sodium channels raises MT.18

In ALS, abnormalities in MT have been inconsist-
ent. While some TMS studies reported an increased
MTor even an inexcitable motor cortex,19–26 others
have documented either normal or reduced
MT.27–32 These discrepancies likely relate to hetero-
geneity of the ALS phenotype and the stage of
disease at time of testing and rate of progression.
Longitudinal studies have documented a reduction
of MTs early in the disease course, increasing to the
point of cortical inexcitability with disease progres-
sion.29 The early reduction in MTappears most pro-
nounced in ALS patients with profuse fasciculations,
preserved muscle bulk and hyper-reflexia.33

Fasciculations may precede other features of ALS by
many months and taken in association with reduced
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MT suggest a cortical origin of fasciculations in ALS.34 Reduced
MT may be modulated by increased glutamate excitation,
reduced gamma-Aminobutyric acid (GABA) inhibition or a com-
bination of both. Reduced MT early in ALS supports an antero-
grade transsynaptic process, whereby cortical hyperexcitability
underlies the development of progressive neurodegeneration.

MEP amplitude reflects a summation of complex corticospinal
volleys consisting of D (direct)- and I (indirect)-waves.14 35 At
threshold, TMS elicits I-waves at intervals of 1.5 ms, which
increase in amplitude with increasing stimulus intensity.35 The
increase in MEP amplitude with increasing stimulus intensity
may be used to generate a stimulus–response curve that follows
a sigmoid function.36 As with MT, the MEP amplitude reflects
the density of corticomotoneuronal projections onto motor
neurons.37 When compared with MT, the MEPs probably assess
the function of neurons that are less excitable or further away
from the centre of the TMS induced electrical field.38 The MEP

amplitude should be expressed as a percentage of the maximum
compound muscle action potential (CMAP) evoked by electrical
peripheral nerve stimulation.6 Doing so takes into account any
lower motor neuron pathology and provides insight into the
percentage of the motor neurone pool activated in the MEP.
Normative values for the MEP to CMAP ratio demonstrate a
large inter-subject variability thereby reducing the sensitivity and
limiting the value of this measure for detecting abnormalities of
the corticomotoneurons.38 39

The MEP responses are modulated by a variety of neurotrans-
mitter systems within the central nervous system.37 40

Specifically, GABAergic neurotransmission via GABAA receptors
suppresses while glutamatergic and noradrenergic neurotransmis-
sion enhances the MEP amplitude.41 Of interest, these changes in
MEP amplitude occur independently of changes in MT, suggest-
ing that physiological mechanisms underlying the generation of
the MEP amplitude and MTare varied.

Figure 1 Transcranial magnetic stimulation excites a network of neurons in the underlying motor cortex with motor evoked potentials recorded
over the contralateral abductor pollicis brevis muscle. The motor cortex is preferentially stimulated when the current flows in a posterior–anterior
direction within the motor cortex.
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Abnormalities of MEPs have been extensively documented in
ALS.38 Increases in MEP amplitude have been reported in spor-
adic and familial forms of ALS (figure 2A), most prominently
early in the disease course.30 31 42 MEP amplitude correlates
with surrogate biomarkers of axonal degeneration, such as the
strength duration time constant, thereby providing an associ-
ation between cortical hyperexcitability and motor neuron
degeneration.30 43 The increase in MEP amplitude in ALS is not
seen in mimic disorders despite a comparable degree of lower
motor neuron dysfunction (figure 2B). This suggests that the
MEP amplitude changes in ALS are excitotoxic in nature.44–47

CMCT represents the time from stimulation of the motor
cortex to the arrival of corticospinal volley at the spinal motor
neuron.6 Multiple factors contribute to the CMCT including
time to activate the corticospinal cells, conduction time of the
descending volley down the corticospinal tract, synaptic trans-
mission and activation of spinal motor neurons.48 CMCT may
be measured using either the F-wave or cervical (or lumbar)
nerve root stimulation methods;49 50 both methods provide
only an estimation of the CMCT,48 51 and given that a variety
of technical, physiological and pathological factors influence
CMCT,48 there is a range of normative data.

In ALS, CMCT is typically modestly prolonged,21 29 52 prob-
ably reflecting axonal degeneration of the fastest conducting cor-
ticomotoneuronal fibres and increased desynchronisation of
corticomotoneuronal volleys secondary to axonal loss.28 53 54

The D90A-SOD1 ALS mutation is a unique exception; in this
disorder CMCT is typically very prolonged.55 The sensitivity of
detecting a prolonged CMCT may be improved by recording
from both upper and lower limb muscles, or from cranial
muscles in ALS patients with bulbar onset disease.26 56

CSP refers to the interruption of voluntary electromyography
activity in a target muscle induced by stimulation of the

contralateral motor cortex.57 The CSP duration is measured
from the onset of the MEP response to resumption of voluntary
electromyography activity37 57 and increases with stimulus
intensity.57–59

The CSP is mediated by both spinal mechanisms, in its early
part, and cortical inhibitory neurons acting via GABAB receptors
in the latter part.57 58 60–63 Since the duration is determined by
the latter part, the CSP is a measure of cortical inhibition. In
addition, the density of the corticomotoneuronal projections
onto motor neurons also influences the CSP, with the CSP dur-
ation being the longest for upper limb muscles.38

Abnormalities of the CSP duration are well established in
ALS.37 Absence or reduction in CSP duration has been reported
in both sporadic and familial ALS, with the reduction of CSP
duration being the most prominent early in the disease
course.30–32 44 46 52 64–67 The reduction of CSP duration
appears to be specific for ALS among neuromuscular disorders,
being normal in X-linked bulbospinal muscular atrophy
(Kennedy’s disease), acquired neuromyotonia and distal heredi-
tary motor neuronopathy with pyramidal features.44–47

Although the mechanisms underlying CSP duration reduction in
ALS remain to be established, decreased motor drive and
reduced GABAergic inhibition, either due to degeneration of
inhibitory interneurons or dysfunction of GABAB receptors,
may underlie the reduction of CSP duration in ALS.

An absent or delayed ipsilateral CSP has also been reported as
an early abnormality in ALS.67 68 The ipsilateral CSP depends
on functioning of transcallosal glutamatergic fibres projecting
onto inhibitory interneurons in the non-stimulated motor
cortex,69 and degeneration of these transcallosal fibres or their
targeted inhibitory interneurons may account for abnormalities
of the ipsilateral CSP in ALS.

PAIRED-PULSE TMS TECHNIQUES
The previous section has covered conventional TMS parameters
that can be assessed through activation of the motor cortex by
single impulses. Motor cortical excitability may also be assessed
using paired-pulse techniques, in which a conditioning stimulus
modulates the effect of a second test stimulus. Several different
paired-pulse paradigms have been developed,37 38 but short
interval intracortical inhibition (SICI), intracortical facilitation
(ICF) and long interval intracortical inhibition have been most
frequently used in ALS clinical research as methods to deter-
mine cortical excitability.

To identify SICI and ICF, a subthreshold conditioning stimu-
lus is typically delivered at predetermined time intervals prior to
a suprathreshold test stimulus.8 70–72 In the early TMS para-
digms,70 72 73 the conditioning and test stimuli were kept con-
stant, and changes in the test MEP amplitude were evaluated.
Typically, if the interstimulus interval (ISI) was between 1 and
5 ms, the test response was inhibited (SICI). Increasing the ISI
to between 7 and 30 ms resulted in the facilitation of the test
response (ICF).38

By recording the descending corticospinal volleys through epi-
dural electrodes at the level of the cervical spinal cord, it has
been deduced that both SICI and ICF originate at the level of
the motor cortex.35 72 Specifically, SICI is associated with a
reduction in the number and amplitude of late I-waves, namely
I2 and I3, with I-wave suppression remaining up to an ISI of
20 ms, which is the typical duration of the inhibitory postsynap-
tic potential mediated through GABAA receptors.71 74 SICI and
ICF appear to be physiologically distinct processes as evident by
lower thresholds for activation of SICI and SICI remains inde-
pendent of the direction of current flow in the motor cortex

Figure 2 (A) The motor evoked potential (MEP) amplitude, expressed
as a percentage of compound muscle action potential (CMAP)
response, is significantly increased in sporadic amyotrophic lateral
sclerosis (ALS) and familial ALS (FALS) when compared with healthy
controls. (B) The MEP amplitude is significantly increased in ALS when
compared with pathological and healthy controls, thereby
distinguishing ALS from ALS mimic disorders.* p<0.05; ***p<0.001.
RMT, resting motor threshold.
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induced by a subthreshold conditioning pulse in healthy sub-
jects, while ICF appears to be preferentially generated by
current flowing in a posterior–anterior direction.73

A limitation of the ‘constant stimulus’ paired-pulse technique has
been the marked variability in MEP amplitudes with consecutive
stimuli.71 75 To overcome this limitation, a threshold tracking tech-
nique was developed whereby a constant target MEP response
(0.2 mV) was tracked by a test stimulus.7 8 Using threshold tracking,
two phases of SICI were identified,7 8 76 77 a smaller phase at ISI
≤1 ms and a larger phase at ISI 3 ms (figure 3A). Although synaptic
neurotransmission through the GABAA receptor mediates the
second phase of SICI,74 78–80 the precise mechanisms underlying
the first phase of SICI remain uncertain. It was initially suggested
that the first phase of SICI reflected local excitability properties,
particularly relative refractoriness of cortical axons, with resultant
resynchronisation of cortico-cortical and corticomotoneuronal
volleys.7 81 Subsequently, it has been argued that synaptic processes
best explain the development of the initial phase of SICI, possibly
driven by activation of cortical inhibitory circuits that were distinct
to those that mediated the later SICI phase.76 77 82

A reduction or absence of SICI, together with an increase in
ICF, indicative of cortical hyperexcitability has been documented
in cohorts of sporadic and familial ALS patients (figure 3A).30–
32 44 45 83–88 Of relevance, cortical hyperexcitability appears to
be an early feature in sporadic ALS, correlating with measures of
subsequent peripheral neurodegeneration.30 In addition, cortical
hyperexcitability appeared as an early feature in familial ALS due
to mutations linked to the superoxide dismutase-1 (figure 3A)
and fused in sarcoma (FUS) genes,31 preceding the clinical devel-
opment of familial ALS (figure 3B).31

Neuropathological studies in ALS have identified degener-
ation of inhibitory cortical interneurons89 and this could

account for the reduction in SICI. Separately, glutamate-
mediated excitotoxicity may also contribute to SICI reduction,
as was suggested by partial correction of SICI abnormalities in
ALS patients treated with the glutamate antagonist riluzole.87 A
recent study documenting SICI reduction at low (40% of resting
MT (RMT)), medium (70% of RMT) and high (90% of RMT)
conditioning stimulus intensities in ALS patients provided
further support for the notion that abnormalities in SICI
appeared to be mediated by a combination of glutamate excito-
toxicity and degeneration of inhibitory cortical circuits.90 As
such, preserving the integrity of intracortical inhibitory circuits,
and counteracting excitatory cortical circuits, may serve as
potential therapeutic options in ALS.

UTILITY OF PERISTIMULUS TIME HISTOGRAMS
A peristimulus time histogram technique can assess the function
of a select subset of corticomotoneurons by recording the per-
turbation of voluntarily recruited motor units induced by a
threshold cortical stimulation.53 In healthy controls, there is a
well synchronised primary peak with a latency of approximately
20–30 ms recording from hand or forearm muscles.28 53

Analysis of this primary peak in disease states such as ALS pro-
vides information on corticomotoneuronal conduction time, the
extent of desynchronisation of corticomotoneuronal descending
volleys, the degree of corticomotoneuronal synaptic input onto
the anterior horn cell and the timing of excitatory and inhibi-
tory inputs to the motor neuron.33

In ALS, the primary peak becomes desynchronised, prolonged
in duration and delayed.28 91 92 In addition, the amplitude of
the primary peak may be increased with additional subcompo-
nents both suggestive of corticomotoneuronal hyperexcitabil-
ity.53 93 These primary peak abnormalities appear early in ALS,

Figure 3 (A) Short interval intracortical inhibition (SICI), defined as the stimulus intensity required to maintain a target motor evoked potential of
0.2 mV, as assessed by the threshold tracking transcranial magnetic stimulation technique. Intracortical inhibition is illustrated by an increase in the
conditioned test stimulus intensity required to track the target response, while intracortical facilitation is indicated by a reduction in test stimulus
intensity. In healthy controls, SICI develops between interstimulus intervals (ISI) of 1 and 7 ms, with two peaks evident at 1 and 3 ms as indicated
by the arrows. Intracortical facilitation developed between ISIs of 10 and 30 ms. SICI is significantly reduced in both sporadic amyotrophic lateral
sclerosis (SALS) and familial amyotrophic lateral sclerosis (FALS). (B) Averaged SICI, between ISI 1 and 7 ms, was reduced in two presymptomatic
superoxide dismutase-1 (SOD-1) mutation carriers 6 months prior to the development of ALS. (C) Normalised SICI, expressed as a fraction of the SICI
value measured at the first study, was reduced 8 months prior to development of ALS in a third presymptomatic SOD-1 mutation carrier.
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accompanied by reduced MTs. With progression of disease,
there is prolongation and increased desynchronisation of the
primary peak, findings possibly specific to ALS when compared
with healthy controls and Kennedy’s disease.53 94

TRIPLE STIMULATION TECHNIQUE
Over recent years, collision techniques such as the triple stimula-
tion technique (TST) have been used to reduced the degree of
MEP desynchronisation which normally occurs following a
single cortical stimulus.95 96 This complex technique is per-
formed by first delivering a high-intensity magnetic stimulus to
motor cortex followed by supramaximal electrical stimulation of
the peripheral nerve supplying the target muscle at the wrist
such that the descending corticomotoneuronal volley is ‘col-
lided’ out by the antidromic action potentials. Collision takes
place along the proximal segment of the peripheral nerve at the
upper arm. A third stimulus is subsequently delivered to Erb’s
point (axilla) after an appropriate delay, eliciting a highly syn-
chronised motor response in those fibres in which the collision
had occurred. The amplitude and area of this test CMAP
response are compared with the response induced by the condi-
tioned TST paradigm (Erb’s point-wrist–Erb’s point stimulation)
yielding an amplitude ratio of >93% and area ratio of >92% in
healthy controls.95 96

In ALS, the TST is sensitive at detecting subclinical cortico-
motoneuronal dysfunction.54 97 Corticomotoneuronal dysfunc-
tion was also reported in Kennedy’s disease using the TST
technique,98 99 potentially limiting the diagnostic utility of TST
in ALS. Recently, however, a combination of TST with single-
and paired-pulse TMS techniques has reaffirmed the functional
integrity of corticomotoneuronal tracts in Kennedy’s disease,100

and thereby the diagnostic utility of TST.

DIAGNOSTIC BIOMARKER IN ALS
Given the well documented TMS abnormalities in ALS patients,
the TMS techniques may be of utility in the diagnostic process
of ALS. Although UMN signs may be clinically evident in ALS,
in some phenotypes such as the flail arm variant, this may not
be the case, and detection of subclinical UMN dysfunction may
facilitate the diagnosis.42 Abnormalities of cortical excitability,
including an increase in MEP amplitude along with reduction of
SICI and RMTs, have been reported in the flail-arm variant of
ALS, underscoring the utility of TMS in detecting subclinical
UMN dysfunction.42 Of further relevance, subclinical UMN
dysfunction has been reported in progressive muscular atrophy

(PMA),101–103 suggesting that PMA may be a phenotype of ALS.
While corticomotoneuronal integrity was recently reported to
be intact in PMA using a β-band intermuscular coherence tech-
nique,104 assessment of cortical function with TMS techniques
may be of diagnostic utility, especially in light of presence of
subclinical UMN pathology in PMA.102 103

Importantly, single- and paired-pulse TMS techniques reliably
distinguish ALS from the mimic disorders (table 1), hastening
the diagnosis of ALS by up to 8 months.47 A reduction in aver-
aged SICI, between ISI 1 and 7 ms, and peak SICI at ISI 3 ms
were the most robust diagnostic TMS parameters, with the
finding of absent SICI exhibiting a sensitivity of 97%.47 Of
further relevance, TMS studies have established the presence of
early and subclinical dysfunction of cortico-bulbar and
cortico-respiratory tracts in ALS,26 105–107 thereby suggesting a
potential diagnostic utility of bulbar and diaphragmatic MEP
recordings. In addition, combining TMS with radiological tech-
niques, such as MR spectroscopy, may further add to the diag-
nostic yield especially given the sensitivity of MR spectroscopy
in detecting subclinical UMN dysfunction.108–110 Consequently,
combining TMS techniques, in particular the recording of SICI
as well as bulbar and diaphragmatic MEPs, together with radio-
logical techniques, such as MR spectroscopy, may enable an
earlier diagnosis of ALS and thereby commencement of neuro-
protective therapies and recruitment into clinical trials.

In addition to its diagnostic utility, it has been suggested that
TMS may exhibit a clinical utility in assessing disease progres-
sion in ALS.111 Specifically, longitudinal TMS studies in ALS
patients reported a significant reduction in MEP amplitude, MT
and CMCT, and suggested that reduction in MEP amplitude
may be an objective biomarker of disease progression in ALS.111

In contrast, others have failed to document any significant longi-
tudinal changes in TMS parameters, thereby arguing against
TMS utility in the monitoring of disease progression in ALS.52

Prospective longitudinal studies are indicated to further clarify
the role for TMS in monitoring disease progression in ALS.

CONCEPTS OF ALS PATHOPHYSIOLOGY
In his original writings, Charcot concluded that ALS was a dis-
order of the brain and that the lower motor neuron component
resulted from a downstream affect. Not all his contemporaries
agreed and in particular Gowers was adamant that the demise
of upper and lower motor neurons were independent events. In
the past 2 decades the site of ALS onset has been revisited, to a
large extent precipitated by the advent of TMS. Three schools

Table 1 Transcranial magnetic stimulation (TMS) techniques in amyotrophic lateral sclerosis (ALS) mimic disorders

Mimic disorder RMT MEP amplitude CMCT CSP duration SICI ICF TST

Kennedy’s disease Normal Normal Normal Normal Normal Normal Normal and abnormal
Acquired neuromyotonia Normal Normal Normal Normal Normal Normal Not done
DHMNP Normal Normal Prolonged Normal Normal Normal Not done
SMA Normal Increased Normal Normal Normal Normal Not done
FOSMN syndrome Normal Normal Normal Normal Normal Normal Not done
Neuromuscular disorders* Normal Normal Normal Normal Normal Normal Not done

Single-pulse TMS studies have established a normal resting motor threshold (RMT) and cortical silent period (CSP) duration in all ALS mimic disorders. The motor evoked potential (MEP)
amplitude was reported to be increased in spinal muscular atrophy (SMA), a finding attributed to greater corticomotoneuronal projections onto the surviving motor neurons. In addition,
the central motor conduction time (CMCT) was reportedly prolonged in distal hereditary motor neuronopathy with pyramidal features (DHMNP). Short interval intracortical inhibition
(SICI) and intracortical facilitation (ICF), assessed by the paired-pulse TMS technique, have been universally normal in ALS mimic disorders. In contrast, triple stimulation techniques
(TST) have been reportedly abnormal in Kennedy’s disease, suggesting subclinical upper motor neuron dysfunction, although a recent study has reaffirmed functional integrity of
corticomotoneuronal tracts in Kennedy’s disease (see Utility of peristimulus time histograms section). Single- and paired-pulse techniques have also been normal in facial onset sensory
motor neuronopathy (FOSMN) syndrome.
*Neuromuscular disorders include demyelinating neuropathy, myasthenia gravis, lead toxicity and Hirayama’s disease.
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of thought have developed pertaining to the role of the UMN,
and related pathophysiological processes in ALS: (i) ‘the dying
forward’ hypothesis, (ii) ‘the dying back’ hypothesis and (iii) ‘the
independent degeneration’ hypothesis (figure 4). While the site
of disease onset in ALS remains uncertain, TMS studies have
tended to favour a cortical origin, with excitotoxicity mediating
motor neuron degeneration in ALS.5 112

The dying forward hypothesis proposes that ALS is primarily
a disorder of the corticomotoneurons, which connect monosy-
naptically with anterior horn cells.113 Corticomotoneuronal
hyperexcitability was postulated to induce anterior horn cell
degeneration transsynaptically via an anterograde glutamate-
mediated excitotoxic process.113 Most TMS studies have
demonstrated that cortical hyperexcitability is an early feature in
sporadic and familial ALS, linked to motor neuron degener-
ation.27 30 31 43 65 112 114 115 In addition, longitudinal studies in
asymptomatic SOD-1 mutation carriers revealed that cortical
hyperexcitability developed prior to the clinical onset of ALS,31

also seen in the G93A SOD-1 mouse model.116 Of relevance,
loss of parvalbumin-positive inhibitory interneurons in the
motor cortex of ALS patients would contribute to the develop-
ment of cortical hyperexcitability.117 In keeping with a cortical
origin of ALS is the now accepted view that ALS and frontotem-
poral dementia (FTD) represent an overlapping continuum of
the same disorder,118 119 an observation underscored by recent
genetic findings establishing that increased hexanucleotide

repeat expansion in the first intron of C9ORF72 gene on
chromosome 9p21 is associated with both ALS and FTD.120 121

Of further relevance, accumulation of TDP-43 ubiquitinated
inclusions in anterior horn cells appears to be a pathological
hallmark of ALS.119 122 Interestingly, identical TDP-43 inclu-
sions may also be evident in cortical neurons within the frontal
(Betz cells) and temporal lobes of ALS patients,119 122 123 under-
scoring the link between FTD and ALS, and thereby a cortical
origin of ALS.

Of relevance, molecular approaches have provided further
corroborating evidence for glutamate excitotoxicity in ALS.
Specifically, a significant reduction in the expression and func-
tion of the astrocytic glutamate transporter, excitatory amino
acid transporter 2 (EAAT2), has been reported in the SOD-1
mouse model and the motor cortex and spinal cord of ALS
patients.124–128 In addition, dysfunction of EAAT2 transporter
appeared to be a preclinical feature in the SOD-1 mouse
model.129 130 Further underscoring the importance of astrocytes
in ALS pathophysiology are recent stem cell studies document-
ing that motor neuron degeneration appears to be initiated by
dysfunction of astrocytes.131

On the postsynaptic side, increased expression of glutamate
receptors permeable to excessive influx of Na+ and Ca2+

ions132 have been reported in ALS,133–137 potentially rendering
the motor neurons more susceptible to glutamate excitotoxi-
city.138 Further support for a role for glutamate excitotoxicity
has been indirectly provided by the clinical benefit of riluzole, a
glutamate antagonist, in ALS patients.139–142

For the glutamate hypothesis to be a plausible mechanism of
motor neuron degeneration, the issue of selectivity of motor
neuron involvement in ALS, together with sparing of motor
neurons in non-ALS conditions exhibiting cortical hyperexcitabil-
ity,38 must be explained. A number of molecular features may
render the motor neurons vulnerable to glutamate toxicity in
ALS. First, motor neurons preferentially express glutamate recep-
tors, such as the AMPA receptors, which are more permeable to
influx of Ca2+ ions.133 134 136 137 In addition, motor neurons in
ALS patients lack the intracellular expression of Ca2+ binding
proteins parvalbumin and calbindin D28k, both required to
buffer intracellular Ca2+.143 144 Aberrant activity of the inositol
1,4,5-triphosphate receptor type 2 receptor has been reported in
ALS,145 146 thereby resulting in higher intracellular concentra-
tions of Ca2+ within the motor neurons. Ultimately, an influx of
Ca2+ ions through the ionotropic glutamate receptors NMDA
occurs in the motor neurons,147 148 resulting in increased intra-
cellular Ca2+ concentration and activation of Ca2+-dependent
enzymatic pathways that mediate neuronal death.149–151

Glutamate excitotoxicity may also result in production of free
radicals that can further damage intracellular organelles and
thereby cause cell death.152–154

It could be argued that the finding of widespread fascicula-
tions in ALS, an important diagnostic criterion,155 may argue
against a dying forward mechanism given that fasciculations are
thought to originate from the distal motor axon, are associated
with abnormalities of sodium and potassium conductance, and
may precede the onset of lower motor neuron dysfunction.156–
162 It seems unlikely that cortical hyperexcitability could lead to
changes in distal axonal excitability that would result in wide-
spread fasciculations. Importantly, a supraspinal mechanism for
triggering fasciculations in ALS has been previously reported.34

In agreement with this notion are findings that fasciculations in
ALS may originate at the level of the motor neuron cell body.157

As such, it could be hypothesised that hyperexcitability of des-
cending motor pathways may contribute to generation of

Figure 4 The dying forward and dying back hypothesis of
amyotrophic lateral sclerosis (ALS). The ‘dying forward’ hypothesis
proposed that ALS was primarily a disorder of the corticomotoneurons
(highlighted in red), with anterior horn cell degeneration mediated via
an anterograde glutamate-mediated excitotoxic process. In contrast, the
dying back hypothesis proposes that ALS begins within the muscle or
neuromuscular junction, with pathogens retrogradely transported from
the neuromuscular junction to the cell body where these pathogens
may exert their deleterious effects.
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fasciculation in ALS, thereby providing additional support for a
dying forward process.

In conjunction with glutamate excitotoxicity, there is compel-
ling evidence that mitochondrial dysfunction may exert an
important role in the pathophysiology of ALS.163–168 Under
conditions of excessive Ca2+ load, as may be evident with glu-
tamate excitotoxicity,169 mitochondrial production of free radi-
cals increases resulting in injury of critical neuronal cellular
proteins and DNA. Mitochondrial dysfunction may in turn
enhance glutamate excitotoxicity by disrupting the normal
resting membrane potential, resulting in loss of the voltage-
dependent Mg2+-mediated block of NMDA receptor chan-
nels.170 From a therapeutic perspective, dexpramipexole, a
pharmacological agent that enhances mitochondrial function,171

was effective in slowing ALS progression in a recent phase II
trial.172 A phase III, multicentre, international trial was com-
menced in March 2011 to determine the clinical efficacy of dex-
pramipexole in ALS (ClinicalTrials.gov-NCT01281189). Taken
further, it is anticipated that TMS studies will be used to deter-
mine the efficacy of dexpramipexole in the modulation of cor-
tical excitability in an attempt to provide further insight into
ALS pathophysiology.

The dying back hypothesis proposes that ALS is primarily a
disorder of the lower motor neurons, with pathogens retro-
gradely transported from the neuromuscular junction to the cell
body where they exert their deleterious effects.173 Although
some pathological studies have indirectly supported a dying
back process,174–176 no pathogens of any type have been identi-
fied in relation to ALS. The presence of widespread dysfunction
within the frontal cortex, including the primary, supplementary
and prefrontal motor cortices in ALS, remains difficult to recon-
cile with a dying back process.3 110 177 In addition, the absence
of central pathology in other lower motor neuron disorders
such as Kennedy’s disease or poliomyelitis provides a further
argument against a dying back process.33 44

The independent degeneration hypothesis suggests that the
upper and lower motor neurons degenerate independently.178

Some 100 years after the original Gowers publication, neuro-
pathological studies provided support for the independent
degeneration hypothesis whereby the degeneration of upper and
lower motor neurons appeared to be independent.179 180 These
correlative morphological techniques, however, may be con-
founded by the anatomical and functional complexity of the
corticomotoneuronal system.181 In particular, there remains
considerable variability in the corticomotoneuronal to anterior
horn cell ratio, due to synaptic changes, and as such attempts to
correlate upper and lower motor neurons on autopsy studies
may not be meaningful.33

In addition to the three competing theories of ALS pathogenesis,
a prion-like propagation hypothesis has also been suggested.182

Specifically, the previously documented contiguous spread of
ALS5 183 could be explained by direct neuron-to-neuron transmis-
sion of pathogenic proteins via exosomes, defined as small lipid
membranous microvesicles.182 The pathogenic exosomes could
spread in either a rostral direction, explaining the rostral-to-caudal
spread of ALS, or in a lateral–horizontal direction accounting for
the lateral-to-medial spread of disease. In addition, non-contiguous
propagation of ALS could also be explained by spread of patho-
genic proteins or toxic molecules through the blood or CSF via
exosomes.182 Interestingly, the genes implicated in ALS pathogen-
esis, including TDP-43 and FUS, possess a putative prion
domain.184 Although a prion-like propagation mechanism may
seem an attractive explanation for the spread of ALS, at present
there is no direct evidence to support such a process in ALS.

Future clinical utility of TMS
Although first described by Charcot some 150 years ago, the
pathophysiological mechanisms underlying ALS, variability, rate
of progression and site of disease onset remain obscure.
Objective assessment of UMN function in ALS remains a difficult
task in clinical neurophysiology.185 While TMS is mainly used as
a clinical research tool, conducted in specialised neurophysio-
logical laboratories, there is an urgent need to objectively assess
UMN function in ALS. This has been underscored by the recent
Awaji diagnostic criteria.155 186 Although needle electromyogra-
phy is used by the criteria to objectively assess lower motor
neuron dysfunction, the detection of UMN involvement is based
solely on clinical examination. Much has recently been learnt
about ALS fromMRI, especially diffusion tensor MRI, functional
imaging and network analysis,110 187–198 but these tools remain
prohibitively expensive, not readily available and may exhibit a
modest diagnostic sensitivity.190 Commercially available TMS
systems that will enable an objective assessment of UMN function
could be readily developed, facilitating the diagnosis of ALS.
Such TMS systems may result in the development of more func-
tional ALS biomarkers that could be used in future drug trials for
early patient recruitment and monitoring of drug efficacy.
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