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ABSTRACT
Background Although deep brain stimulation (DBS) of
the subthalamic nucleus (STN) is a highly effective
therapeutic intervention in severe Parkinson’s disease, its
mechanism of action remains unclear. One possibility is
that DBS suppresses local pathologically synchronised
oscillatory activity.
Methods To explore this, the authors recorded from
DBS electrodes implanted in the STN of 16 patients with
Parkinson’s disease during simultaneous stimulation
(pulse width 60 ms; frequency 130 Hz) of the same
target using a specially designed amplifier. The authors
analysed data from 25 sides.
Results The authors found that DBS progressively
suppressed peaks in local field potential activity at
frequencies between 11 and 30 Hz as voltage was
increased beyond a stimulation threshold of 1.5 V.
Median peak power had fallen to 54% of baseline values
by a stimulation intensity of 3.0 V.
Conclusion The findings suggest that DBS can suppress
pathological 11e30 Hz activity in the vicinity of
stimulation in patients with Parkinson’s disease. This
suppression occurs at stimulation voltages that are
clinically effective.

INTRODUCTION
Although pharmacological treatment in Parkinson’s
disease is initially satisfactory, many patients suffer
from severe fluctuations in their clinical state,
involuntary movements and prolonged periods of
bradykinesia and rigidity after a few years. These
problems are difficult to manage and have led to
a renaissance of invasive treatment strategies for
late-stage Parkinson’s disease, particularly deep
brain stimulation (DBS) of the subthalamic nucleus
(STN). Many potential mechanisms of action of
DBS in Parkinson’s disease have been suggested.1

One possibility, explored further here, is that DBS
suppresses or over-rides pathologically synchron-
ised oscillatory activity which acts as a noisy
disruptive signal.2e5 One type of activity in
particular has received attention in recordings from
patients with Parkinson’s disease and involves
exaggerated synchronisation at about 20 Hz, in the
b frequency band. This is evident in the cross-
correlation of neuronal discharges, oscillations of
the local field potential (LFP) and spike-triggered
averages of LFP activity.3e6

The evidence that DBS may modulate b activity
in patients with Parkinson’s disease is mixed and
mostly indirect. The latter is because simultaneous
recordings of STN LFPs during DBS were, until
recently, obviated by stimulation-induced electrical

artefacts which are several orders of magnitude
larger than the spontaneous fluctuations of the
LFP.7 Thus, investigators have either recorded at
projection sites of the STN, where stimulation
artefact is less of a problem, or recorded the
immediate after-effects of STN DBS in those
patients with a delayed return of bradykinesia upon
cessation of DBS. The findings have been mixed,
with most studies reporting suppression of
b activity,8e12 but one study failing to find such an
effect.13 The authors of the latter study have since
also recorded from the STN directly during DBS
and again failed to show significant suppression of
LFP power in the b band.14 Although this study
was a technological feat, not all recordings had
peaks in the b band prior to DBS so that power
suppression may have been difficult to detect in
these cases, a problem compounded by the
recording of four patients on medication and four
patients withdrawn from levodopa. Here, we use
similar methodology to study the effects of STN
DBS in a larger sample of 16 patients with evidence
of pathological synchrony in the subthalamic
region at baseline, prior to stimulation. Our aim
was to address whether STN DBS suppresses local
b activity when this is present.

METHODS
A complete description of the methods is available
as supplementary material.

Patients and surgery
Sixteen patients participated with informed written
consent and the permission of the local ethics
committees, and in compliance with national
legislation and the Declaration of Helsinki. All had
advanced idiopathic Parkinson’s disease. Implanta-
tion of bilateral STN DBS electrodes was performed
sequentially in the same operative session under
local anaesthesia, as previously described,15 in all but
one patient (case 10; see table in supplementary
material). The patients reported here are distinct
from those reported by Kühn et al.10

Recordings
Recordings were performed in the few days
between electrode implantation and their connec-
tion to the pulse generator. The Medtronic elec-
trodes used have four equally spaced contacts.
Contact 0 was the lowermost and contact 3 was
the uppermost (see supplementary material). Out
of the 16 patients, recordings were possible on 28
sides (see table in supplementary material). We
used a single-channel, isolated, high-gain (100 dB)
amplifier7 with pass band (4e40 Hz) to record LFP
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signals from the contacts of an electrode while another contact
of the same electrode was stimulated. All patients were recorded
while they sat in a comfortable chair after overnight withdrawal
of their usual antiparkinsonian medication. Patients were
instructed to rest quietly, and absence of voluntary movement
was confirmed by continuous visual inspection. Initially, about
100 s was recorded from contacts 1/3 and 0/2 on each side with
the patient at rest and with no stimulation. The spectral pattern
was then analysed immediately off-line in Spike 2 using spectral
averages and time-evolving spectral displays. Three of the 28
sides had no discrete spectral peaks, regardless of frequency (see
table in supplementary material), and were not studied further.
In the remaining 25 sides, we selected the contact pair with the
highest peak power (contact pair 1/3 on 19 sides and contact
pair 0/2 on six sides) for recording during subsequent stimula-
tion. This was done to maximise our chances of detecting power
suppression during DBS (ie, of avoiding a floor effect). The
contact pair with the highest b activity has also been previously
documented to be well positioned in STN and to concur with
the site selected for chronic therapeutic stimulation.15e19

Thereafter, patients were recorded at the selected contact pair
on a given side for a further 2 min without stimulation, the
latter having been discontinued at least 20 min earlier. Then,
unilateral DBS was begun at 1.0 V (19 sides), 1.5 V (five sides) or
2.0 V (one side), depending on time constraints and prior clinical
information regarding efficacy. Stimulation was subsequently
increased in step increments of 0.5 V (or 1.0 V on two sides) up
to 3.5 V, or until side effects were encountered. Each new voltage
was maintained for w100 s. When time allowed (12 sides in
eight patients) at the end of the above slow ramping of stimu-
lation, the latter was then discontinued for 100 s and thereafter
stimulation re-presented for a further 100 s at a clinically
effective voltage. This was performed so that we could deter-
mine whether any suppression of LFP activity during voltage
ramping depended on a certain duration of stimulation or on
a certain threshold intensity (see results).

Monopolar simulation was delivered by a Medtronic external
stimulator (type 3625) between active contacts 1 (when recording
from 0/2) or 2 (when recording from 1/3) and a subclavicular
surface electrode (pulse-width 60 ms; frequency 130 Hz). Clinical
assessment, other than visual inspection, was not made until
after all recordings were completed so as to avoid any influence on
the LFP. Clinical assessments (items 20, 22 and 24 of UPDRS III)
were not blinded. The lowest voltage (threshold) for clinically
effective stimulation was determined separately on each side
contralateral to the stimulation (see supplementary methods in
supplementary material for further details).

Analysis
Spectral analysis was performed in Spike2 v6, using serial FFT
blocks of 256 data points (frequency resolution 0.78 Hz,
Hanning window, windows not overlapped). These were
visualised as time-averaged power spectra (figures 1, 2A) and
time-frequency plots (figure 2B). Peaks were defined as local
elevations of power in which the five contiguous bins centred on
the peak had to be significantly different (p<0.05) to the mean
of the two adjacent bins below and three adjacent bins above.
One or more discrete peaks were seen in the power spectra from
25 sides. These tended to vary in frequency (5e29 Hz; see table
in supplementary material). For this reason, we analysed the
amplitude of the LFP in each peak rather than the sum of the
LFP power over the whole frequency band of interest. Nineteen
sides had a discrete spectral peak in the b 11e30 Hz band, and
these were selected for further analysis.

The beta-band was considered in its entirety and also subdi-
vided into 11e20 Hz and 21e30 Hz bands, following the
suggestion that these may have different functional character-
istics.20e23 Power in a selected peak was calculated from the sum
of the five contiguous bins centred on the peak for each period of
stimulation (0e3.5 V). Peak power levels were expressed as
percentages of the baseline peak power (in the absence of
stimulation). This was performed so as to limit the effects of
variability in baseline power between sides, which may, in part,
be due to small variations in the positioning of recording contact
with respect to the source of the b activity between sides and
patients. A similar normalisation procedure is a standard step in
the analysis of event related power changes in the EEG, where
baseline variability between subjects is also significant. Statis-
tical analyses were performed in SPSS 15 for Windows. As data
were not normally distributed, non-parametric statistics were
used as detailed in the results (and outliers included). Median
values are given, together with the 25th and 75th percentiles
(interquartile range or IQ), except when the range was illus-
trated in a figure. All post-hoc tests specified in the text as
p<0.05 survived correction for multiple testing using the false
discovery rate procedure.24

RESULTS
The custom-built amplifier performed well so that between 4
and 40 Hz there was little difference between autospectra of
LFPs recorded from the subthalamic area with this and
commercial devices, provided no DBS was delivered (black and
green traces in figure 1). Similarly, there was little difference
between autospectra of LFPs recorded with the custom-built
device without DBS and with therapeutically subthreshold DBS
(black and blue traces in figure 1). However, stronger stimulation
voltages suppressed peaks in the 11e30 Hz band (red trace in

Figure 1 Power autospectra of local field potential (LFP) recorded
between contacts 1 and 3 from left subthalamic nucleus deep brain
stimulation (DBS) electrode in case 1. Log power autospectra show
a peak centred at 8.6 Hz (left vertical arrow), which is unaffected by
amplifier type or DBS applied to contact 2 (pulse-width 60 ms; frequency
130 Hz), and a peak centred around 25 Hz (right vertical arrow), which is
unaffected by amplifier type but which is suppressed by DBS applied to
contact 2 at 2.5 V (130 Hz). The latter was also the threshold for the
suppression of contralateral rigidity and bradykinesia as determined by
clinical examination using stimulation of the same contact pair
performed at a different time on the same day. Two kinds of amplifier
were used: Digitimer D360 and our custom-built amplifier. Frequency
resolution is 1 Hz. Autospectra averaged over 110 s recorded during
same experimental session, but not simultaneously.
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figure 1). In vitro experiments suggested that DBS induced
artefact was unlikely to be responsible for this suppression (see
supplementary materials). Note that recordings were made
sequentially, rather than simultaneously, which likely accounts
for the small differences in the autospectra recorded without
DBS in figure 1.

Time-evolving spectra also suggested suppression of LFP peaks
between 11 and 30 Hz once a certain threshold voltage of
stimulation was surpassed (figure 2). At the group level, there
was an effect of stimulation intensity for peaks in the 11e30 Hz
band (n¼144,c2¼49.1, p<0.00001; KruskaleWallis test; figure 3).
If the latter band was subdivided into lower and upper ranges,
there was also an effect of stimulation intensity for peaks in the
11e20 Hz (n¼86, c2¼35.1, p<0.00001) and 21e30 Hz bands
(n¼58, c2¼15.4, p¼0.017; KruskaleWallis tests).

Post-hoc ManneWhitney U tests revealed that stimulation at
$1.5 V suppressed the power in peaks over the 11e30 Hz band
(figure 3) and at $2.0 V for its subdivisions when these were
considered separately (all p<0.05). This threshold compared
favourably with the median threshold for the clinical effect of
stimulation, determined later using the same contact for stim-
ulation (2.0 V, range 1.5e3.5 V). Moreover, the voltage threshold
for peak suppression on individual sides was always 0.5 V less
than or equal to the threshold for inducing contralateral foot
dyskinesias (case 5 R STN 2 V and case 16L STN 2 V) or tremor
suppression (case 2 R STN 2.5 V and case 4 R STN 2.5 V and
L STN 3.0 V), where these were evident during the initial
simultaneous stimulation and recording session.

With stimulation intensities of 1.0 V, 1.5 V, 2.0 V, 2.5 V, 3.0 V
and 3.5 V, the median power of peaks in the 11e30 Hz band fell
to 97.5%, 90.5%, 69.6%, 59.6%, 54.2% and 40.5% of baseline
values (see figure 3 for ranges and significance levels). Note that
this graded suppression in the averaged data partly arose because

individual thresholds for b suppression varied. Indeed, four sides
showed a temporary increase in peak power at lower stimula-
tion voltages, before peak power was suppressed, as voltage was
increased still further (figures 2, 3).
The general picture described above did not change if the

frequency band of interest was defined slightly differently as
13e30 Hz, if a broader area of 13 (rather than 5) bins centred on
each peak in the b band was analysed or if the two sides in
which stimulation-induced contralateral dyskinesias were
excluded (see supplemental results). Moreover, similar results
were obtained if we only analysed those sides in which stimu-
lation was performed at both 1.5 V and 2.0 V (regardless of any
other voltages tested), thereby allowing analysis using the
Friedman test for related samples (see supplemental results).
Finally, we addressed a potential ambiguity in the interpre-

tation of the increasing suppression of LFP peaks in the
11e30 Hz band with increasing voltage. As presented above,
the increasing suppression could be a direct consequence of the
voltage being stepped up or could arise form the progressively
longer duration of stimulation. Accordingly, on 12 sides, stim-
ulation was discontinued for 100 s at the end of each series of
voltage steps to allow spontaneous activity to recover and then
a single clinically effective voltage step re-presented (figure 2).
These single steps of higher voltage (median 2.5 V, IQ range
2.0e3.0 V) remained effective at suppressing peaks between 11
and 30 Hz, even though they were not preceded by any
prolonged ramping of stimulation (median suppression to 45%
of preceding 50 s without stimulation, IQ range 26e97%;
z¼2.48, p¼0.013, Wilcoxon signed ranks test). However, the
level of suppression was still less than that observed with the

Figure 3 Summary box plot of power suppression of beta band peaks
during stimulation at different voltages. Power is expressed as
a percentage from baseline (without deep brain stimulation). There is
a progressive suppression of power of spectral peaks of local field
potential between 11 and 30 Hz with increasing voltages. The bottom
and top of the boxes are the 25th and 75th percentile, and the band near
the middle of the box is the 50th percentile (the median). The whiskers
represent one SD above and below the mean of the data. Interrupted
lines link medians. Shaded boxes are different from 100%
(ManneWhitney U tests p<0.05, corrected for multiple testing). Peaks
with outlying power levels at a given stimulation voltage are denoted by
asterisks. The outliers above 150% at 1.5 and 2.0 V are those sides, like
those illustrated in figure 2, in which there was a temporary increase in
the power of the peak as stimulation voltage was incrementally
increased. Peak power suppressed thereafter as stimulation voltage was
increased still further.

Figure 2 Effect of deep brain stimulation (DBS) of right subthalamic
nucleus on local field potential (LFP) in case 5. (A) Power autospectrum
of LFP recorded without stimulation. There is a large peak arrowed at
13.6 Hz. (B) Frequency-time log power spectrum of LFP (contact pair
02). Frequency resolution 0.39 Hz. Power, as in (A), shown over the pass
band of the amplifier (4e40 Hz). Red bars along the time axis denote
periods of DBS at 2.0e3.0 V. Dyskinesias of the contralateral foot were
noted at voltages of 2.0 V and above. Note suppression of spectral peak
with stimulation $2.0 V, with evidence of a temporary increase in the
power of the peak with stimulation at 1.5 V and a delayed return of the
peak after stimulation at 3.0 V is terminated. (C) Timing and voltage of
DBS applied at contact 1. In total, four peaks (on three sides from two
patients) between 11 and 30 Hz demonstrated an initial but temporary
increase in power before the onset of suppression, as stimulation
voltages were progressively increased (see outliers in figure 3).
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same stimulation intensity after the progressive stepping up of
voltages on the same sides (median 35%, IQ range 25e63%;
z¼2.229, p¼0.026, Wilcoxon signed ranks test), suggesting that
the duration of stimulation as well as the voltage also had some
effect. Relevant in this regard is the finding that longer STN
stimulation durations produce longer-lasting after-effects.8

DISCUSSION
We have shown that DBS of the STN area at frequencies and
voltages in the therapeutic range leads to a concurrent
suppression of locally synchronised activity between 11 and
30 Hz, where the latter is evidenced by a peak in baseline spectra
of LFP activity over this frequency range. Such b activity is
believed to be pathological4 and is much attenuated in healthy
animals, and, in implanted dystonic patients, is only seen in
those made Parkinsonian by the use of chronic tetrabenazine.25

Thus, the present study bears out the assumption that the
suppression of pathological oscillatory activity seen temporarily
after cessation of DBS is a reflection of suppression during
DBS.8 10 12 The LFP is currently believed to mainly reflect slow
subthreshold currents, primarily postsynaptic potentials, of
a large local neuronal population26 and is considered to reflect
mainly the ‘input’ to the local network.27 This interpretation is
supported in the case of the b band LFP activity recorded in the
STN by the fact that it is coherent with, but lags, similar
oscillatory activity in the cerebral cortex, in line with cortical
driving.22 28 29 Viewed in this light, our results are compatible
with the recent demonstration in a rodent model that it is the
afferents to the subthalamic nucleus that must be stimulated at
high frequency, rather than the local neurons themselves, to
overcome parkinsonism.30

The above rodent study also showed that stimulation of
cortical afferents at 20 Hz greatly exacerbated parkinsonism.30

Indeed, synchronisation in the b band has been implicated in
parkinsonian bradykinesia and rigidity in both correlative and
interventional studies,3e6 so its suppression by subthalamic
stimulation using standard therapeutically effective parameters
raises the possibility that this suppression of local b activity may
underlie some of the therapeutic actions of DBS. This is not to
say that the effects of this suppression are limited to the STN
region, or that this is the sole consequence of stimulation. It is
possible that DBS influences neuronal activity both locally at
the site of stimulation, that is in and around STN, and over
other functionally connected elements of the cortexebasal
ganglia network.1 9 10 31 32 This could arise either directly
through the suppression of synchronised activity at the stimu-
lation site, so that this activity is no longer propagated, or
through the effects of stimulation-induced high-frequency
activity of STN neurons and axons in the vicinity.1 32 33 The
latter would not have been detected by our amplifier, which
necessarily had a frequency cut-off well below this. Any induced
high-frequency activity might then be transmitted to the output
structures of the basal ganglia34e36 where it might have further
effects, including suppression of pathological activity at these
and later relay stages. Additionally, stimulation may lead to
antidromic spikes that collide with ongoing spontaneous path-
ological activity, such as might come from the cortex.1 This
could contribute to the suppression of synchronisation in the
subthalamic region, given that much of this may be driven by
the cerebral cortex.22 28 29

Our study was constructed to test whether deep brain stim-
ulation can suppress local b activity when this is present. We
argued that there was little point proceeding to stimulation if
there was no peak at rest that could potentially be suppressed.

Possible reasons for an absent b peak at rest include suboptimal
targeting,15 stun effect15 36e38 and incomplete withdrawal of
antiparkinsonian medications (through either the long-lasting
nature of some dopamine agonists or covert levodopa ingestion).
Still, those few cases in which spectral peaks are absent in the
b band during the postoperative period raise the possibility that
DBS-induced suppression of such activity may not explain
clinical improvement in every patient. In line with this,
although suppression of b activity correlates with treatment-
induced improvement in bradykinesia and rigidity, it does not
correlate with improvement in parkinsonian tremor, so that
even in patients with clear b activity, this may not relate to all
motor impairments.39e41 However, it is also possible that
pathological synchrony may, in the minority of our cases, have
predominated at sites in the basal gangliaecortical circuit other
than the STN. We only measured synchronisation in the
subthalamic region and yet, as discussed above, high-frequency
stimulation of the STN area may have effects at several sites in
the distributed basal gangliaecortical circuit.
Although the present data indicate that DBS of the STN at

clinically effective voltages is associated with the simultaneous
suppression of oscillatory activity in the b band, they do not
address the question of the precise site of origin of such LFP
activity. In particular, whether b activity is confined to the
dorsal STN or extends for a few millimetres above its dorsal
border is unclear. Support has been provided for both possibili-
ties, depending on whether LFPs18 42 or population spiking
activity43 are studied. Both DBS of the dorsal STN and caudal
zona incerta have clear antiparkinsonian effects.44e46

The present study suffers from several limitations. In order to
recruit a large patient sample, we studied patients at several
different surgical centres, which may have introduced additional
variance in our data set. Another limitation was the absence of
kinematic assessment that might have allowed us to compare
the threshold stimulation voltage for significant power
suppression with the voltage that objectively improved motor
performance in all patients. This issue should be addressed in
future studies. Nevertheless, our results demonstrate a poten-
tially important association between the suppression of local
oscillatory synchrony and DBS in the therapeutic range.47 Note,
that there was no significant difference in the DBS-induced
suppression of peak power in the lower and upper frequency
bands, when the b band was split for analysis. This indicates
that although the functional significance of the subdivisions
within the b band remains debated, they are both suppressed by
STN DBS.
The present study provides direct evidence that STN DBS can

reduce b frequency activity in the region of the STN. It is
interesting to note that levodopa has a similar effect,16 38e40 48 49

raising the possibility that suppression of such oscillatory
synchrony by several treatment modalities may contribute to
the amelioration of some aspects of parkinsonism. Moreover,
even if the suppression of b activity were found to be epiphe-
nomenal rather than causally important in parkinsonism, the
present results are important in reinforcing the suitability of
subthalamic LFP activity in the b band as a feedback signal for
closed-loop DBS systems.50 This activity correlates with
bradykinesia and rigidity38e40 51 and is suppressed by DBS.
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