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ABSTRACT
Recent advances in genomics and statistical computation
have allowed us to begin addressing the genetic basis of
stroke at a molecular level. These advances are at the
cusp of making important changes to clinical practice of
some monogenic forms of stroke and, in the future, are
likely to revolutionise the care provided to these patients.
In this review we summarise the state of knowledge in
ischaemic stroke genetics particularly in the context of
how a practicing clinician can best use this knowledge.

INTRODUCTION
Stroke is the third largest cause of death and dis-
ability in the developed countries, with around
25% of all strokes afflicting those less than 65 years
of age. Conventional stroke risk factors such as
hypertension, atrial fibrillation, cigarette smoking,
diabetes mellitus and obesity are well established.
However, these factors do not entirely account for
the occurrence of stroke in unexposed populations
and also fail to explain the incidence of stroke in
select individuals within a population that is uni-
formly exposed to environmental risk factors.
Some of this phenotypical variability has been
attributed to genetic differences, with familial pat-
terns of inheritance also lending support.
Advances in our knowledge about the workings

of genes and their variants coupled with techno-
logical advances in analysing the genome along with
improved bioinformatics has enabled greater under-
standing of the underlying molecular aetiology of
ischaemic stroke. This review summarises our
current state-of-knowledge in stroke genetics, par-
ticularly from a practicing clinicians’ perspective.
While stroke remains principally a common

sporadic disorder, our understanding of monogenic
disorders has improved considerably1 2 We begin
therefore with the monogenic disorders before
addressing the more common sporadic condition.

MONOGENIC STROKE DISORDERS
CADASIL
Described by Joutel et al,3 cerebral autosomal dom-
inant arteriopathy with subcortical infarcts and leu-
koencephalopathy (CADASIL) is a Mendelian form
of hereditary small-vessel disease and vascular
dementia. Over 100 pathogenic mutations in the
NOTCH3 gene, an evolutionarily highly conserved
transmembrane receptor protein regulating cell
fate,4 are known to almost always lead to an odd
number of cysteine residues in one of the 34 epi-
dermal growth factor like repeats in the extracellu-
lar domain of the Notch3 protein. These mainly
missense mutations are thought to result in con-
formational changes of the Notch3 protein.

Mutations have predominately been identified in
individuals of European descent, although cases
have been found in other populations such as
South Asia.5 The prevalence of CADASIL is likely
underestimated, as clinical suspicion along with
laboratory diagnosis is required. There are few
prevalence studies, with one registry in Scotland,
UK estimating prevalence rate of confirmed
CADASIL cases of 1.98/100 000.6

Accumulation of granular osmiophilic material
within the tunica media is pathophysiologically
characteristic of CADASIL, ultimately leading to
luminal stenosis in long penetrating arteries supply-
ing subcortical white matter with consequent and
expected reduction in cerebral blood flow.7

Nodular white matter lesions are seen on imaging
and most ischaemic changes occur in the basal
ganglia, periventricular white matter and temporal
lobes,1 8 and a family with spinal cord lesions in
the presence of a novel NOTCH 3 mutation has
been described.9

Patients can clinically present with disorders
ranging from migraine with aura (20–40% of
affected patients), ischaemic events (60–80%),
dementia, seizures,10 apathy and mood distur-
bances.11 Patients are usually affected with recurrent
lacunar strokes by the age of 50 years despite the
absence of well recognised risk factors such as hyper-
tension.12 With advancing age these risk factors
become more common and the evidence suggests
that traditional risk factors accelerate disease progres-
sion.13 Though the above criteria apply to most
cases, CADASIL has also been observed in cases with
elderly onset, in the presence of stroke risk factors
such as hypertension, and with obscure family
history,14 making clinical suspicion difficult and
molecular diagnosis even more important. Recently a
sequencing study suggested that common variants in
NOTCH3 gene increase the risk of age-related white
matter hyperintensities in hypertensives,15 providing
a nice example of Mendelian disorder informing
upon a common sporadic disease.
Experimental animal models and observational

human studies (clinical examination and imaging)
have provided clinicians an essential understanding
of the pathophysiology of CADASIL. However,
genotype-phenotype correlations have been difficult
to determine precisely, mainly because of the het-
erogeneous nature of the mutations, but some are
associated with a worse prognosis.16 17 Clinicians
do however, now have a battery of methods
(imaging, genetics and skin biopsy) accompanied by
epidemiological data to accurately diagnose
CADASIL.
Although there is no cure for CADASIL, we

would argue that aggressive management of
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established risk factors18 by the clinician as well as managing
symptoms (eg, acetazolamide at a dose of 125–500 mg/daily
may be an effective migraine prophylaxis19) are, in fact, treat-
ment strategies that should be considered.

CARASIL
Cerebral autosomal recessive arteriopathy with subcortical
infarcts and leukoencephalopathy (CARASIL) or Maeda syn-
drome20 is caused by mutations in HTRA1 gene localised on
ch10q encoding HtrA serine protease 1 (HTRA1) that represses
signalling mediated by the transforming growth factor-β
family.21 Prevalence rates are lower than CADASIL, although it
is probably more frequent than the few dozen currently
reported cases, which to-date have only been described from
Japan and China.22 CARASIL presents itself in the 20s and 30s
with ischaemic stroke, dementia, premature baldness and attacks
of severe lower back pain or disk herniation. Brain MRI shows
diffuse white matter changes and multiple lacunar infarctions in
the basal ganglia and thalamus.22 Histopathologically, arterio-
sclerosis is seen in the penetrating arteries in the absence of
granular osmiophilic or amyloid material.23 Patients with
CARASIL are also less likely to have migraines and exhibit psy-
chiatric disorders, such as euphoria and emotional liability.1

FABRY’S DISEASE
Fabry’s disease is a congenital metabolic disorder caused by defi-
cient activity of α-galactosidase A (α-gal), resulting in a progres-
sive accumulation of globotriaosylceramide and related
glycosphingolipids within vascular endothelial cells, myocardial
cells and neurons.24 The prevalence of Fabry’s disease in
patients with stroke is variable but has been reported to be as
high as 4.9%25 to 6.9% with a median age of onset of 39 years
in men,26 otherwise the incidence is reported as 1 per 3100
individuals.27 Although an X linked lysosomal storage disorder,
female carriers can develop symptoms suggestive of Fabry’s
disease28 with symptoms appearing comparatively later than in
men, at a median age of 45.7 years.26

Neurological symptoms are wide-ranging with the most
common clinical presentation being peripheral neuropathy pre-
senting as burning pain in the extremities and gastrointestinal
symptoms. Fabry’s disease should be considered in patients with
small-fibre neuropathy of unknown cause.29 Ischaemic stroke
and transient ischaemic attack (TIA) are also frequent presenta-
tions in Fabry’s disease, with abnormalities of the vertebral and
basilar arteries particularly common.30 MRI classically shows
high intensity lesions in the pulvinar and torturous and dilated
large vessels (dolichoectasia). The well recognised pulvinar sign
(hyperintensity in the pulvinar nucleus of the thalami) as well as
increased basilar artery diameter are highly characteristic of this
disease,31 although this sign has also been reported in
Wernicke’s and paraneoplastic encephalopathy, vacuolar leu-
coencephalopathy in association with coeliac disease as well as
sporadic and variant Creutzfeldt-Jakob disease. Fabry’s symp-
toms are not specific and diagnosis through clinical suspicion
and imaging is insufficient to confirm diagnosis. Measuring the
α-gal activity in leukocytes and plasma and sequencing the
α-GAL gene for the over 400 known pathological mutations
confirms the presence of Fabry’s.1

Bi-weekly recombinant α-gal enzyme replacement therapy at a
dose of 1 mg/kg body weight has shown benefits for heart,
kidney and neuropathic pain, especially if patients are treated
early in their disease;32 33 however, the risk of stroke remains
substantial and management of conventional stroke risk factors

is important as well as early augmentation of enzyme replace-
ment therapy.34 35

MELAS
Mitochondrial myopathy, encephalopathy, lactic acidosis and
stroke-like episodes (MELAS) is one of the most clinically preva-
lent and commonly encountered genetic disorder, 80% of
which is accounted for by maternally transmitted mitochondrial
tRNA (Leu) A3243G mutations.36 Another 10% of patients
carry the T3271C mutation. The prevalence of MELAS varies
from 7.9/100 000 in England to 236/100 000 in Australia37

with an age of onset ranging from 2 years to 20 years. Typically,
symptoms manifest in childhood including migraines, seizures,
anorexia and vomiting.2

Stroke-like episodes occur in MELAS, but the aetiology of those
strokes has been given several explanations38 ranging from vaso-
genic oedema,39 cytopathic toxicity and hyperperfusion.40 MRI
and MR spectroscopy show lesions that do not follow recognised
arterial territory distribution and have a tendency to affect the pos-
terior (temporal, occipital and parietal) aspects of the brain.38

The diagnosis of MELAS can be confirmed with a skeletal
muscle biopsy, which stains strongly positive with succinate
dehydrogenase and which shows ragged morphology of skeletal
fibres on modified Gomori trichrome.38 Most patients also have
increased lactate/pyruvate ratios in serum and cerebral spinal
fluid (CSF).41

Most therapeutic strategies to treat MELAS use supplements
and enzyme cofactors that enhance mitochondrial metabolism
and activity of the respiratory chain.42 Small studies (mostly
case reports) have demonstrated the effects of coenzyme Q10
and its synthetic analogue, idebenone, to have an effect on
decreasing lactic acid levels43 and reducing stroke-like episodes
in patients with MELAS.44 Dichloroacetate, an inorganic
enzyme activator, which reduces lactic acid levels was tested on
patients with MELAS without showing any health benefits and
discontinued due to neurotoxicity.45 L-arginine has also been
tested on patients with MELAS with stroke-like episodes and a
significant reduction in frequency of events and ischaemic injury
was observed.46 Other potential therapies include oral adminis-
tration of vitamins (B complex, E and C), steroids, coenzyme
Q10, idebenone and L-arginine2; however their clinical benefits
have yet to be determined.

OTHER MONOGENIC DISEASES
Other single-gene diseases1 2 have also been associated with
(usually childhood) ischaemic stroke including sickle cell47 and
homocystinuria.48

WHITE MATTER DISEASE
White matter lesions are commonly seen on T2-weighted MRIs
in up to 70% of elderly patients,49 the lesion numbers and
extent increasing with age. Although several factors are likely to
account for the presence of these lesions, including hyperten-
sion, atherosclerosis and cigarette smoking, the final common
pathway is likely to be chronic ischaemia,50 among other
factors. The presence of these white matter lesions is of prog-
nostic importance, as they increase the likelihood of stroke51

and cognitive decline.52

White matter disease has been shown to have a heritable basis
with estimates varying around 0.66–0.7253 depending on the
whether the lesions are subcortical or global—the latter having
greater heritability. With such high heritability estimates, numer-
ous investigators have explored the role of several candidate
genes, but with few convincing replications; while genome-wide
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association models without an a priori hypothesis have not
fared much better.54 Notwithstanding the unimpressive results
thus far, the epidemiological evidence for heritability does
suggest that there are susceptibility loci to be found. That view
has seen recent support when, following better phenotypical
classification of white matter disease and a greater number of
subjects recruited to improve power, a locus on 17q25 asso-
ciated with white matter disease (WMD) was identified in a
population of European descent.55

SPORADIC ISCHAEMIC STROKE
While monogenic disorders are highly penetrant, they remain
relatively rare as a cause of stroke. Established causes of cerebro-
vascular disease such as hypertension and diabetes of course are
extremely important,56 but these environmental determinants
are likely influenced by inherited risk factors and a considerable
wealth of data supports a genetic basis for stroke.

HERITABILITY OF SPORADIC STROKE
Animal studies have suggested an underlying genetic basis for
stroke.57 In humans, twin studies have shown that a positive
family history is a risk factor for stroke (OR 1.65; 95% CI 1.2
to 2.3) and monozygotic twins are more likely to be concordant
than dizygotic twins (OR, 1.65; 95% CI 1.2 to 2.3).58 Further,
stroke tends to run in families, leading researchers to suspect an
inherited component (although it would not be surprising that a
common disease like stroke is often found within families as
family member’s age). Most family59 60 and twin studies61 62

suggest the genetic liability is greater in patients aged younger
than 70 years58 63 and varies with stroke subtype.64

Case-control studies suggest a 76% increase in the risk of ischae-
mic stroke in the presence of a family history of stroke,58

although not all reports have demonstrated a positive relation-
ship with family history65 possibly due to confounding factors
such as blood pressure.66 Heritability of stroke has also recently
been estimated using data derived from genome-wide associ-
ation studies (GWAS). Genome-wide complex trait analysis—a
tool that allows researchers to estimate heritability of a complex
phenotypical trait such as stroke using genome wide association
single nucleotide polymorphism (SNP) data on unrelated indivi-
duals—estimates variance explained by all SNPs entered against
a phenotypical trait rather than individual SNPs.67 Using this
methodology, heritability estimate for all ischaemic strokes was
37.9% but varied considerably by subtype with the greatest
associated with large vessel (40.3%) and cardioembolic disease
(32.6%) and lowest for small vessel disease (16.1%).67 The
phenotypical heterogeneity between stroke subtypes and differ-
ences in aetiology could potentially explain the differences in
heritability estimates.

GENES FOR STROKE
In a comprehensive meta-analysis of 187 candidate genes in
37 481 ischaemic stroke cases and 95 322 controls, five genes
were identified that robustly associated with stroke susceptibility
Factor V ArgGln506 (OR 1.31), ACE/ID (OR 1.15), MTHFR
C677T (OR 1.26), Prothrombin G20210A (OR 1.60), PAI-1 5G
(OR 1.11) and Glycoprotein IIIa Leu33Pro (OR 1.24).68 With
the exception of MTHFR, which is a metabolic enzyme control-
ling plasma homocysteine levels, the other genes belong to the
blood coagulation system, and mutations in these genes may
predispose for ischaemic or haemorrhagic stroke, depending
on the type of mutation. Experimental studies have yet to estab-
lish the exact role for these genes in human stroke. While
the effect sizes per risk allele are small, the sum of the

population-attributable risks across all associations was ∼30%,
which, given the relative frequency of stroke, translates to a
large clinically observed effect (although publication bias prob-
ably inflated the estimate of risk). Conversely, although the
monogenic disorders confer a high individual relative risk, they
contribute very little to population stroke due to their rarity.68

Although the gene variants identified in literature based
meta-analysis have not been convincingly replicated in GWAS
studies,67 this does not discount the validity of those findings.
For example, MTHFR is a well studied genetic risk variant of
ischaemic stroke and elevated levels of its intermediate pheno-
type, homocysteine, have been causally associated with the
increased risk of stroke.68 69 In addition, coverage of the human
genome with genome-wide studies is neither equal across regions
of the genome nor comprehensive. Many previously associated
candidate genes such as ACE are not adequately covered by the
currently commercially available GWAS platforms.

The choice of the candidate gene investigated tended to be based
on the investigators ‘best guess’ or a local research interest in that
biological pathway or candidates derived from presumed related
vascular conditions, most commonly from the cardiology literature.
This is not surprising as the pathophysiology of the stroke and
heart disease has appeared similar, and so researchers took their
best guess from a related field. However, these predictions have
only occasionally lived up to expectations,70 with some candidates
appearing to be organ-specific rather than pathophysiology-
specific.68 The organ specific association of genetic variants could
be partly explained through the effect of confounding risk factors
such as diabetes, hypertension and elevated plasma cholesterol
levels, which demonstrate arterial specificity; for example, choles-
terol is mainly important for coronary artery disease (CAD) while
hypertension mainly for ischaemic stroke.71 72

Candidate gene approaches have been helpful in indicating
the likely risk ratios that a risk allele would imply. While the
odds associated with these SNPs are varied due to small sample
sizes, meta-analyses of these studies have pooled data and pro-
vided robust results with ORs ranging between 1.2 and 2.6
depending on the gene of interest.73 These ORs have broadly
held true across different ethnic populations with few excep-
tions,74 although the evidence base in non-Europeans is consid-
erably smaller, and the lack of research here should be a cause
for concern for investigators. However, the emergence of
genome-wide approaches that test anonymous loci unburdened
by any a priori hypothesis (see below) have presented investiga-
tors with an alternative method to test the productivity of the
candidate-based approach.67 Using highly characterised stroke
cases from the Wellcome Trust Case Control Consortium that
have been subjected to a whole-genome search, investigators
determined that of the 32 previously reported candidate genes
associated with ischaemic stroke, 4 were still associated follow-
ing multiple correction analysis but not when more stringent
criteria were applied.67 Conversely, with the three
GWAS-associated genes (see below) PHACTR1 in large vessel
disease, PITX2 and ZFHX3, cardiac embolic stroke held true.

These studies have substantiated our contention that stroke is
a complex disorder with low locus-specific ORs similar to other
multifactorial diseases such as hypertension and coronary artery
disease75 76 (table 1).

CAUSAL RELATIONSHIPS
When conducted in large appropriately phenotyped and
matched populations, association studies have been successful in
identifying stroke susceptibility genes and have stood the test of
time.77 While such observational studies help us understand the
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genetic underpinning of risk, they are silent on whether there
exists a causal relationship between the risk variants and disease.

Mendelian randomisation has been used in an attempt to
support a causal relationship between risk genotype and pheno-
type.78 The method is predicated firstly on an observational
association between a biochemical factor and disease, and sec-
ondarily on whether concordant levels of risk occur for a geno-
type that simulates the biochemical factor.78 As randomisation
to the genotype of interest occurs at gamete formation, the arm
to which the subject is assigned is not burdened by any bias.
Results from Mendelian randomisation strategies are therefore
more likely to support causation.

This strategy was first successfully approached in human stroke
with MTHFR and homocysteine79 and subsequently has demon-
strated causal relationships to ischaemic stroke for Factor V
Leiden, ACE and Prothrombin G20210A.68 While causal relation-
ships to stroke have been demonstrated for homocysteine, rando-
mised clinical trials have failed to demonstrate a clinical benefit in
reducing homocysteine levels with vitamin supplementation.80

However, there may be a variety of factors for this result, including
the chosen dose of the treatment regimen to the length of
follow-up in the trial perhaps being too short to reverse long-term
effects of homocysteine. Moreover, the effect of the MTHFR
variant on homocysteine concentration is greatest in regions of the
world (eg, Asia) where there is no government policy of folate for-
tification.81 This contrasts with many Western countries (America,
Australia, New Zealand, etc) where a programme of folate fortifi-
cation leads to higher baseline levels and, paradoxically, is where
most of the (negative) folate reduction clinical trials have been con-
ducted. Trials of lowering homocysteine and determining stroke
risk may better be served in global regions of endemic low folate.
However, this position has not always found universal support
with all forms of cardiovascular disease.82

There are several limitations of the Mendelian randomisation
method. Basing a causal relationship on an associated locus
could be fallacious as the variant could be in linkage disequilib-
rium with the actual causative variant that was not assessed.
Another major limitation could be the inability to calculate a
strong genetic instrumental variable to assess the causal effect of
a phenotype on an outcome.83 In the case of homocysteine,
plasma levels of the biomarker can also be affected by other
genes, such as MTR and MTRR, and therefore the choice of
the correct instrumental variable is essential to decipher the
appropriate causal relationship.

GENOME-WIDE ASSOCIATION STUDIES
With completion of the Human Genome Project in 2003, scien-
tists identified regions of variation between individuals, the
most common form of which is the SNP. The human genome is

believed to consist of over 10 million SNPs and, with the efforts
of the International HapMap project, three million SNPs have
been characterised. Information provided by HapMap has
enabled the development of commercially available genotyping
microarrays and heralded the era of the GWAS. As technology
used to unravel the genetic basis of disease has advanced, our
ability to rapidly and relatively inexpensively search for suscepti-
bility loci without a priori hypotheses has dramatically
improved. Individual candidate gene studies have predominantly
been replaced by whole-genome screening, which has been suc-
cessfully conducted in a variety of disorders.84 85

GWAS on stroke were few and far between till 2003 when
Gretarsdottir et al86 identified phosphodiesterase 4D to be sig-
nificantly associated with risk of ischaemic stroke in an Icelandic
population (DeCODE). However several attempts to replicate
these findings failed,87 88 while some studies reported conflict-
ing results.89 90 These discrepancies were attributed to possible
problems in study design, that is, pooling of carotid embolism
and large vessel disease strokes in order to identify the risk asso-
ciation with phosphodiesterase 4D, which we now know are
subtype specific.91 (Lack of independent replication and limited
experimental validation of results using B cell lines was also sug-
gested to be a major limitation of the original study92). Several
other GWAS followed, but no single locus was identified at a
genome-wide level of significance defined as p<10−8.

The Wellcome Trust Case Control Consortium 2 and the
International Stroke Genetics Consortium performed a GWAS
involving 3548 cases of ischaemic stroke with replication of
potential signals in 5859 additional cases.93 The study demon-
strated, as others had done previously,94 95 associations for cardi-
oembolic stroke near PITX2 and ZFHX3, which are known risk
loci for atrial fibrillation.96 The study also confirmed the associ-
ation for large vessel stroke and a 9p21 locus. A novel finding
was an association for large vessel stroke within HDAC9 on
chromosome 7p21.1 (OR 1.42). The recent METASTROKE97

meta-analysis, which included 15 stroke cohorts comprising
∼12 000 cases and ∼60 000 controls, failed to identify any new
genetic risk variants and only validated previous findings of
genes PITX2, ZFHX3 and HDAC9. All loci exhibited heteroge-
neous effect across subtypes, supporting distinct genetic architec-
tures for each subtype.

Several confounding factors can lead to the failure of replica-
tion of a GWAS-discovery SNP. Errors in genotyping, quality
control and choice of analytical methods can lead to false posi-
tive results as has been implicated for the DeCODE study.92 The
European population is genetically stratified98 and an admixture
of populations with different ancestry can also lead to inflated
statistics. Results from large GWAS have implied that dissecting
out the susceptibility genes for stroke needs to consider its

Table 1 OR (95% CI) with effect differences between heart disease and ischaemic stroke (adapted from ref. 68)

Gene Polymorphism MI/IHD IS Effect

Factor V Leiden Arg506Gln 1.17 (1.08 to 1.28) 1.25 (1.08 to 1.45) MI=IS
ACE I/D 1.21 (1.11 to 1.32) 1.15 (1.06 to 1.25) MI=IS
MTHFR C677T 1.16 (1.05 to 1.28) 1.27 (1.08 to 1.48) MI=IS
Prothrombin G20210A 1.25 (1.05 to 1.50) 1.62 (1.29 to 2.04) IS>MI
Glycoprotein IIIa Leu33Pro 1.02 (0.96 to 1.07) 1.20 (1.08 to 1.34) IS only
PAI-1 4G/5G 1.06 (1.02 to 1.10) 0.90 (0.82 to 0.99) >MI<IS*
Angiotensinogen M235T 1.11 (1.03 to 1.19) 0.96 (0.87 to 1.02) >MI<IS*

*Appears to be risk in myocardial infarction (MI) and/or ischaemic heart disease (IHD) but protective in ischaemic stroke (IS) which could either be because the gene is ‘organ-specific’
or simply a matter of low sample size resulting in poorly estimated ORs. I/D, insertion/deletion.
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subtypes as different entities. This should not be surprising, as
‘stroke’ is a clinical syndrome encompassing any sudden focal
neurological deficit from a vascular aetiology. Investigators have
therefore increasingly begun to analyse stroke genetic datasets
by subtype. In a very recent GWAS, the evidence for a genetic
influence on all-cause ischaemic stroke became more compelling
with large artery stroke subtype.91 This new finding on 6p21.1
was also replicated using other independent datasets.91

Using incident cases from the Rotterdam study as the discov-
ery cohort, a novel genetic locus on chromosome X near the
androgen receptor gene was found to associate with vascular
dementia as defined by the National Institute of Neurological
Disorders and Stroke and Association (NINDS-AIREN) criteria,
and the SNP rs12007229 association replicated in two inde-
pendent cohorts.99 Similar effect sizes were noted for men and
women, but independent confirmation of this finding is war-
ranted. A further GWAS has identified association between cere-
bral white matter lesion volume and a locus on chromosome
17q25.55 A recent meta-analysis of all published data supported
the association (rs3744028; p=5.3×10−17).100

Several other GWAS have been conducted in stroke mostly
in those of European descent, but also a few of Asian ances-
try101–103 (table 2). The ORs range from 1.00 to 1.85, confirm-
ing that the effect sizes are small but the attributable risks could
be large given the common nature of this condition. Many
studies however have failed to replicate their findings.108 109 106

Noting that some ischaemic stroke has a maternal heritability, a
GWAS of common mitochondrial sequence variants failed to
find a genome significance threshold, although this study was
underpowered for GWAS.110 Some investigators have under-
taken GWAS on surrogate markers such as white matter hyper-
intensities intermediate phenotypes111 or intermediate
phenotypes such as intima-media thinkness.112

The fact that most of these studies have been conducted in
individuals of European descent is a blot on the stroke genetic
landscape with very little comparative data available in other
populations, although establishment of high quality biobanks is
now underway (eg, South Asia and Middle East) and is expected
to deliver interesting results.113 114

A recent pilot study identified rare exonic variants to be asso-
ciated with stroke suggesting that coding variations in the
human genome need to be closely examined.115 The genetic
architecture of stroke is complex and is likely to include
non-SNP variations as well. Large structural genomic variations
such as copy number variations (CNVs) have been known to
play a role in monogenic disorders; however their role in

complex traits such as stroke is less clear. GWA of copy number
variations associated with ischaemic stroke has not identified
any unique structural genomic variations that may contribute to
the risk for stroke.116 Smaller candidate gene based studies have
provided some evidence of a unique genomic structure in
patients with ischaemic stroke,117 however large well powered
studies have failed to do the same.118

There are several ongoing challenges in applying GWAS data
to everyday clinical practices and individual patient care, since
available directives are mostly speculative. The most widely held
belief is that based on genetic information and clinical pheno-
types of an individual, tailor made treatment plans can be
designed by clinicians. Genetic testing kits can help clinicians
test their patients for risk variants and provide them with infor-
mation about risk factors that can act as confounders for the
disease. With the addition of genotype information to clinical
phenotype based predictive disease models, the prognostic
ability can be improved. Possible pharmacogenetic effects may
also be predicted based on the knowledge of the patients’ geno-
type. However, the complexity of a polygenic syndrome such as
stroke is immense and, with the exception of certain highly
penetrant monogenic forms of stroke such as CADASIL, the
prognosis of stroke is difficult based on common genetic var-
iants that occur in only 1–5% of the general population and
have modest to small effect sizes. Even though results from the
genome wide association testing of stroke are promising they
currently have no value in predicting risk and treatment.

CONCLUSION
The understanding of stroke genetics has made significant pro-
gress in the past few years and has provided clinicians with
in-depth knowledge of the molecular underpinnings of the
disease that can be useful in improving patient care. However,
unlike many of the other conditions being tackled, stroke has
several orders of complexity that need to be managed. As an
age-related condition, family clusters are difficult to collect and
dissecting out the genetic component to its aetiology from
environmental determinants is that much harder. Moreover,
stroke is a heterogeneous condition comprised of a number of
subtypes that are likely to have different genetic aetiologies.
Only recently are these subtypes being accurately and reliably
characterised to allow a more refined phenotype to be explored
with a greater degree of focus. Notwithstanding these unique
issues, international collaborations have been successful in a
variety of stroke subtypes and the results of more of these colla-
borations in different ethnic populations are eagerly awaited.

Table 2 Genome-wide association studies (GWAS) in stroke

Chr Gene Subtype RA RAF OR (95% CI) p Value

7p21.1 HDAC993 97 LVD A 0.09 1.39 (1.27 to 1.53) 2.03×10−12

4q25 PITX295 97 CE A 0.19 1.36 (1.27 to 1.47) 2.8×10−16

9p21.3 CDKN2A/B97 104 105 LVD G 0.51 1.17 (1.09 to 1.25) 2.93×10−5

12p13.33 NINJ2106 All A 0.23 1.41 (1.27 to 1.56) 2.3×10−10

16q22.3 ZFHX394 97 CE G 0.17 1.25 (1.15 to 1.35) 2.28×10−8

11q12 AGTRL1103 All G – 1.3 (1.14 to 1.47) 6.66×10−5

– CELSR1102 All G – 1.85 (1.29 to 2.61) 1×10−4

5q12 PDE4D86 CE and cryptogenic 0.16 – 1.5×10−6

13q12-13 ALOX5AP107 All 0.15 1.67 9.5×10−5

– PRKCH101 SVD – 1.4 5.1×10−7

6p21.1 rs55662191 LVD 1.21 4.7×10−8

Chr, chromosome; CE, carotid embolism; LVD, large vessel disease; p, probability value; RA, risk allele; RAF, risk allele frequency; SVD, small vessel disease.
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