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ABSTRACT
Background White matter hyperintensities (WMH) are
a common radiographic finding and may be a useful
endophenotype for small vessel diseases. Given high
heritability of WMH, we hypothesised that certain
genotypes may predispose individuals to these lesions
and consequently, to an increased risk of stroke,
dementia and death. We performed a meta-analysis of
studies investigating candidate genes and WMH to
elucidate the genetic susceptibility to WMH and tested
associated variants in a new independent WMH cohort.
We assessed a causal relationship of WMH to methylene
tetrahydrofolate reductase (MTHFR).
Methods Database searches through March 2014 were
undertaken and studies investigating candidate genes in
WMH were assessed. Associated variants were tested in
a new independent ischaemic cohort of 1202 WMH
patients. Mendelian randomization was undertaken to
assess a causal relationship between WMH and MTHFR.
Results We identified 43 case-control studies
interrogating eight polymorphisms in seven genes
covering 6,314 WMH cases and 15,461 controls. Fixed-
effects meta-analysis found that the C-allele containing
genotypes of the aldosterone synthase CYP11B2
T(−344)C gene polymorphism were associated with a
decreased risk of WMH (OR=0.61; 95% CI, 0.44 to
0.84; p=0.003). Using mendelian randomisation the
association among MTHFR C677T, homocysteine levels
and WMH, approached, but did not reach, significance
(expected OR=1.75; 95% CI, 0.90−3.41; observed
OR=1.68; 95% CI, 0.97−2.94). Neither CYP11B2
T(−344)C nor MTHFR C677T were significantly
associated when tested in a new independent cohort of
1202 patients with WMH.
Conclusions There is a genetic basis to WMH but
anonymous genome wide and exome studies are more
likely to provide novel loci of interest.

INTRODUCTION
White matter hyperintensities (WMH) are defined
as diffuse white matter abnormalities detected on
T2-weighted or fluid attenuated inversion recovery
(FLAIR) MRI and appearing as regions of low
attenuation on brain CT scans.1 They are a common
radiological finding, particularly in older indivi-
duals, with a reported prevalence of up to 95%.2 3

These lesions, of presumed vascular origin, may rep-
resent an endophenotype for small cerebral vessel
diseases such as stroke and dementia; thus, WMH
could be used in early diagnosis and guided

management of these conditions.4 WMH has con-
sistently been associated with increasing age and
hypertension,5 as well as smoking,6 previous stroke7

or TIA,8 and elevated homocysteine (Hcy)
levels.9 10 Studies have reported high heritability
estimates ranging between 55% and 71%,11–13

implying a significant genetic component to WMH
development.
To date, a single WMH GWAS has been pub-

lished by the CHARGE consortium14 that identi-
fied six single nucleotide polymorphisms (SNPs) in
a novel locus on chromosome 17q25 associated
with WMH burden in stroke-free participants.14

The most significantly associated SNP on 17q25
was rs3744028 with a reported p value of
1.0×10−9 after adjustment for hypertension.14 This
association between the 17q25 locus and WMH
has recently been tested in a cohort of ischaemic
patients with stroke, where it has replicated in
association with WMH volume but not lacunar
stroke status.15 The latter may suggest that
these two diseases have distinct pathogeneses of
cerebral microangiopathy. Rs3744028 was
again found to be significantly associated with
increased WMH burden (effect size=0.12;
SE=0.04; p=0.003), although this SNP was not
the most significantly associated in this
study population (rs9894383; effect size=0.13;
SE=0.04; p=0.0006).
Several statistically underpowered small candi-

date gene studies on WMH have been published,
but the results remain invalid due to low power. By
consolidating data from these smaller studies, a
literature-based meta-analysis is considered to be
the next best way to increase power and find a
true genetic risk association. We conducted a
comprehensive meta-analysis of all case–control
studies investigating candidate genes in WMH,
tested our findings in a new independent WMH
cohort and sought to identify a causal relation-
ship with methylene tetrahydrofolate reductase
(MTHFR).

METHODS
A comprehensive search strategy in electronic data-
bases (PubMed, Google Scholar, Embase) was
undertaken using a range of search terms for
WMH (leukoaraiosis, white matter hyperintensities,
white matter lesions, white matter disease,
age-related white matter changes, homocysteine,
hyperhomocysteinaemia) in combination with the
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Boolean operator AND/OR (genetics, genotype, genes or poly-
morphism). Further searches were conducted for each gene
identified, using specific gene names combined with the WMH
search terms. Additional studies were found by hand searching
reference lists of relevant papers. For duplicate papers, the
largest cohort was selected. A variety of different methods were
utilised to quantify WMH levels or volumes, but in general
visual rating scales were more commonly used than automated
programmes. Most papers reported genotype frequencies within
the Hardy-Weinberg equilibrium. Our study complied with
PRISMA guidelines.

Study selection
Inclusion criteria were: (1) case–control studies where WMH
was reported as a grade on a standardised scale or as a volume,
(2) WMH was objectively confirmed by MRI or CT brain scans,
(3) genotype frequency was reported for WMH cases and con-
trols. Studies were excluded if they did not explicitly distinguish
WMH from other brain lesions such as lacunes and microin-
farcts. For the Mendelian randomisation part of this study,
additional selection was based on plasma Hcy levels for cases
and controls in the studies of participants of European
descent reporting SDs associated with mean Hcy levels.

Data extraction
Some studies quantified WMH grade on a standardised scale
and presented this as dichotomous data, so for each genotype
the number of participants in the highest and lowest WMH
grade groups was extracted. Where studies subdivided WMH
into two categories: deep (or subcortical) WMH and peri-
ventricular WMH, without providing data for WMH as a
whole, data for the deep WMH was analysed. In cases where
the scale cut-off could be chosen, the upper grade group
included Fazekas scale 2 or 3 or equivalent.16 For continu-
ous WMH grade data, the mean grade and SD for each geno-
type were taken, and for studies presenting WMH data as a
volume, we extracted the mean volume and SD for each
genotype.

Data analysis for meta-analysis
Data were analysed using Review Manager V.5.2. Using a
Mantel-Haenszel statistical method, a pooled OR and 95% CI
were calculated for each SNP-WMH association. Statistical sig-
nificance was set at p<0.05. Where significant heterogeneity was
detected, a random-effects analysis model was utilised in order to
account for this interstudy heterogeneity. In all other cases, a
fixed effects model was used. Heterogeneity was assessed with an
I2 test for each meta-analysis (significance set at p<0.10) and an
iterative analysis was performed where significant heterogeneity
was found. Publication bias was assessed with Funnel plots and
by performing Egger’s regression analysis (two-tailed tests) using
Comprehensive Meta-Analysis V.2.0 (CMA).

Data analysis for Mendelian randomisation
Mendelian randomisation allows the testing of a causal effect of
observed data in the presence of confounding factors. Review
Manager was used to calculate an OR and 95% CI for
MTHFR-WMH grade association using the TT vs CC model so
as to be in keeping with the model used by Casas et al17 who
report a weighted mean difference in the Hcy level between TT
and CC-genotype to be 1.93 μmol/L in their meta-analysis. A
pooled mean difference in Hcy levels between cases with WMH
and controls was calculated and then converted into a corre-
sponding OR of WMH for that specific increase in Hcy level

using CMA software. The expected OR was then calculated
using the following formula:17

ExpectedOR ¼ Xy=z

where X=the OR of risk of WMH for a Z μmol/L increase in
plasma Hcy levels.

And Y=the mean difference in the Hcy level (μmol/L)
between TTand CC-genotype participants.

To calculate the 95% CI for the expected OR, we took the
natural log of this number to determine the logged OR. The
95% CI for this logged OR is calculated by taking 1.96×SE on
either side of this logged OR.18 The SE is taken as the square
root of the sum of the reciprocals of the number of cases and
controls. The exponential function in Excel was used to convert
the upper and lower CI limits into the 95% CI limits for the
original OR.

Replication of the associated genetic variants
Any associated genetic variants were tested in a cohort of 1202
ischaemic stroke cases of European ancestry with genome-wide
genotyping available (‘MGH,’ ‘ISGS,’ ‘ASGS,’ ‘SWISS’ cohorts)
that was previously used to replicate chromosome 17q25 locus
association with WMH.15 In this cohort, WMH volume
(WMHv) was measured using a previously validated, semiauto-
mated volumetric method (facilitated by MRIcro, University of
Nottingham School of Psychology, Nottingham, UK; http://
www.mricro.com).19 For this analysis, MRI scans obtained from
a 1.5 T scanner were converted from DICOM into Analyse
format, and the contiguous, supratentorial axial T2 FLAIR
sequences were cross-referenced with diffusion-weighted images
(DWI) and examined to exclude hyperintensities that represent
oedema, acute ischaemia or chronic infarcts. WMHs were
manually outlined as regions of interest, and their intersections
with automatically derived intensity thresholds were manually
examined and touched up by a trained reader. The total
WMHv was calculated by doubling the measurement from the
hemisphere unaffected by stroke, or by adding bilateral
WMHv values in participants with infratentorial DWI lesions.
To control for variation in head size, the intracranial area
(ICA) was calculated from two middle sagittal T1 slices and
used to normalise WMHv by multiplying it by the
individual-to-the-mean ICA ratio.20 21 Specific study character-
istics and genotyping information of this cohort are previously
described.15

RESULTS
Our initial search identified 1248 studies with 20 additional
records from references of relevant articles. Removal of dupli-
cates and matches to our predefined inclusion and exclusion cri-
teria resulted in 43 studies which had available data for
meta-analysis interrogating nine polymorphisms in 10 different
genes (figure 1). The majority used MRI to assess WMH in
(mostly Caucasian) participants aged between 60 and 80 years.
Most of the genes studied were involved in the renin-
angiotensin-aldosterone system (ACE, angiotensinogen (AGT),
angiotensin II receptor 1, aldosterone synthase). The other iden-
tified genes had roles in Hcy levels (MTHFR), antiatherosclerosis
(paraoxonase 1) and cholesterol regulation (apolipoprotein E).
Other gene polymorphisms studied were brain-derived neuro-
trophic factor/Val66Met22 and nitric oxide synthase 3/
G894T,23 24 but some studies had yet to be replicated22 and
others did not have data available for meta-analysis24 (table 1).
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MTHFR677 cytosine/thymine (TT vs CT/CC)
Six studies investigated the association between the MTHFR
C677T polymorphism (TT vs CT/CC) and WMH (n=4002).25–30

Five studies (n=2988) assessed the genotype difference between
the lower and upper WMH grade groups25 26 28–30 (figure 2A)
and one study (n=1014) compared the mean WMH volume
between different genotypes27 (figure 2B). A fixed-effects
meta-analysis demonstrated a trend of increased risk burden of
WMH with MTHFR TT compared to the CT/CC genotype
(OR=1.19; 95% CI 0.95 to 1.51; p=0.14; I²=28%; p=0.24)
when the totality of data was plotted (see figure 2). Only one study
measured the WMH volume, thus limiting further analysis (stan-
dardised mean difference=−0.09; 95% CI −0.29 to 0.11;
p=0.37).

Aldosterone synthase CYP11B2T(-344)C (CC/CT vs TT)
Two studies (n=1153) evaluated the association between the
aldosterone synthase CYP11B2T(-344)C polymorphism and

dichotomous graded WMH, and the fixed-effects meta-analysis
demonstrated that the C-allele-containing genotypes were at a
reduced risk of white matter lesions (OR=0.61; 95% CI 0.44
to 0.84; p=0.003; I²=0%; p=0.70).31 32

Apolipoprotein E (ε4 allele-containing genotypes vs others)
There were 31 studies/substudies that investigated the associ-
ation between apoE (ε4 allele-containing genotypes vs other
genotypes) and WMH (n=11 270).29 33–57 Twenty-two of these
studies (n=7622) assessed the genotype difference between the
lower and upper WMH grade groups,29 33–41 50–58 three studies
(n=187) compared the mean WMH grade42–44 and six studies
(n=3461) compared the mean WMH volume between different
genotype groups.45–49

The fixed-effects meta-analysis demonstrated no association
between apoE ε4-allele carriage status and having severe WMH
on neuroimaging (WMH grade, dichotomous data, OR=0.98;
95% CI 0.87 to 1.11; p=0.78; I²=5%; p=0.39). Within parti-
cipants with WMH, there was no significant predominance of
the ε4 allele-containing genotypes (WMH grade, continuous
data, pooled standardised mean difference=0.29; 95% CI
−0.03 to 0.61; p=0.07; I²=0%; p=0.87; WMH volume,
pooled standardised mean difference=0.06; 95% CI −0.02 to
0.14; p=0.14; I²=47%; p=0.09).

ApoE/ε2 allele-containing genotypes vs others
Three studies (n=817) evaluated the risk of WMH in apolipo-
protein E ε2-containg genotypes compared to other apolipopro-
tein E genotypes38 41 52 and a random-effects meta-analysis
reported no significant association (OR=1.42; 95% CI 0.46 to
4.43; p=0.54) but significant heterogeneity was detected
(I2=84; p=0.002). Iterative analysis revealed that the source of
inter-study heterogeneity was attributable to Smith 2004,52 the
exclusion of which resulted in pooled OR=2.59; 95% CI 1.60
to 4.19; p=0.0001; I2=0%; p=0.92.

ACE (DD vs ID/II)
Nine studies/substudies evaluated the association between ACE
(DD vs ID/II model) and WMH (n=2615).29 31 33 59–63 Eight
studies (n=2121) assessed the genotype difference between the
lower and upper WMH grade groups29 31 33 60–63 and 1 study
(n=494) compared the mean WMH volume between different
genotypes.59 The random-effects meta-analysis suggested no
increased risk of WMH with ACE DD-genotype compared to
those with ID or II genotype (OR=1.46; 95% CI 0.92 to 2.31;
p=0.11), but there was substantial heterogeneity detected
between studies (I²=67%; p=0.004). No one study contributed
to the heterogeneity as determined by iterative analysis. One
study assessed WMH volume and also reported non-significance

Figure 1 PRISMA flow chart demonstrating the search strategy.

Table 1 Summary table demonstrating each gene, polymorphism, model used, number of cases and controls and resulting OR, CI and p values

Gene Polymorphism Model used Cases Controls OR 95% CI p Value

Apolipoprotein E4 E4 carriers vs non-carriers 2614 5008 0.98 0.87 to 1.11 0.78
Apolipoprotein E2 E2 carriers vs non-carriers 248 569 1.42 0.46 to 4.43 0.54
ACE Insertion/deletion DD vs ID/II 756 1365 1.46 0.92 to 2.31 0.11
MTHFR C677T TT vs CT/CC 800 2188 1.19 0.95 to 1.51 0.14
Angiotensinogen M235T TT/MT vs MM 328 806 1.12 0.84 to 1.50 0.44
Angiotensinogen II receptor 1 A1166C CC vs AC/AA 105 354 1.23 0.59 to 2.54 0.58
Aldosterone synthase CYP11B2 T(-344)C CC/CT vs TT 197 956 0.61 0.44 to 0.84 0.003
Paraoxonase 1 L55M LL/LM vs MM 77 266 1.42 0.61 to 3.28 0.41

MTHFR, methylene tetrahydrofolate reductase.
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(standardised mean difference=−0.07; 95% CI −0.27 to 0.13;
p=0.48).

Angiotensinogen Met235Thr (TT/MT vs MM)
Four studies (n=1134) evaluated the association between AGT
M235T (TT/MT vs MM model) and dichotomous graded
WMH and fixed-effects meta-analysis found no association
between them (OR=1.12; 95% CI 0.84 to 1.50; p=0.77;
I²=0%; p=0.44).31 60 61 64

Angiotensin II receptor 1 A1166C (CC vs AC/AA)
Two studies (n=459) investigated whether the angiotensin II
receptor 1 (AGTR1) A1166C polymorphism was associated
with dichotomous WMH grade. Using the dominant model
(CC vs AC/AA) and a fixed-effects analysis, our meta-analysis
found no association (OR=1.23; 95% CI 0.59 to 2.54;
p=0.58; I2=23%; p=0.26).31 60

Paraoxonase 1 L55M (LL/LM vs MM)
Two studies (n=343) evaluated the association between the para-
oxonase 1 (PON1) gene and dichotomous graded WMH and
fixed-effects meta-analysis found no association between them
(OR=1.42; 95% CI 0.61 to 3.28; p=0.41; I²=0%; p=0.33).65 66

Mendelian randomisation
Ninety-seven studies and five additional records were identified
in the search for papers investigating the difference in plasma
Hcy levels between WMH cases and controls. After 21 dupli-
cate records were removed, the remaining 81 were screened and
77 were excluded according to the predefined inclusion and
exclusion criteria.

Ethnic differences in plasma Hcy levels are well documented
with East Asians consistently reported to have significantly
lower Hcy levels compared to Caucasians67–70 (table 2). Given
these ethnic disparities, we considered it appropriate to exclude
studies of East Asian (ie, Japanese, Korean) participants from
the Mendelian randomisation, as the majority of studies were
conducted in participants of European descent.

The remaining four studies covering 745 Caucasian partici-
pants were meta-analysed and a comparison of WMH cases vs
controls found a pooled mean difference in plasma Hcy levels
of 3.71 μmol/L (95% CI 2.79 to 4.63; p<0.00001; I2=0%)
(figure 3). CMAV.2.0 software was used to calculate the corre-
sponding pooled OR of risk of WMH for this mean difference
in Hcy levels using a fixed effects analysis model, OR=2.93
(95% CI 2.18 to 3.94).

In a meta-analysis of 42 studies, we had previously examined
the effect of MTHFR on plasma Hcy levels in healthy partici-
pants (n=15 635) and reported the weighted mean difference in
the Hcy level between TT and CC-genotype to be 1.93 μmol/L
(95% CI 1.38 to 2.47; p<0.0001).17 Using these three pieces of
data, the expected OR was calculated using the following
formula:

ExpectedOR ¼ 2:931:93=3:71 ¼ 1:75

where:
▸ 2.93 is the OR of risk of WMH for a 3.709 μmol/L increase

in plasma Hcy levels,
▸ 1.93 is the mean difference in the Hcy level (μmol/L)

between TTand CC-genotype participants.

Figure 2 Meta-analysis, forest plot
and pooled OR of risk from studies
investigating the association between
WMH and methylene tetrahydrofolate
reductase, MTHFR (TT vs CT/CC,
recessive model). (A) Graded WMH,
dichotomous data (B) WMH volume.
MTHFR, methylene tetrahydrofolate
reductase; WMH, white matter
hyperintensities.

Table 2 Ethnic differences in plasma homocysteine level between East Asian and Caucasian participants

Study Sample n
Mean tHcy± SD
(μmol/L) p Value Association

Anand et al68 Europeans
Chinese

326
317

10.0±3.8
9.2±3.8

0.02 Chinese had significantly lower Hcy levels.

Carmel et al69 White
Asian-Americans

237
68

14.8*
12.8*

<0.05 Whites had higher Hcy concentrations than Asian-Americans.

Senaratne et al70 Caucasians
East Asians (Chinese, Japanese)

106
17

10.8±0.6
7.6±0.5

<0.001 East Asians had significantly lower plasma Hcy compared to Caucasians.

*SD not reported by study.
tHcy, total homocysteine.
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To calculate the 95% CI for the expected OR of 1.75, we
took the natural log of 1.75 to get the logged OR of 0.56. The
95% CI for this logged OR was −0.108 to 1.227 and was calcu-
lated by taking 1.96×SE on either side of 0.56.18 The SE was
0.34, which was calculated as the square root of the sum of the
reciprocals of the number of cases and controls. Using the expo-
nential function in excel, these limits were converted into the
95% CI limits for the original OR of 1.75 giving EXP (−0.108)
=0.897 to EXP (1.227)=3.412. From our meta-analysis of two
studies investigating the association between MTHFR (TT vs
CC) and WMH grade, the observed OR for WMH was 1.68
(95% CI 0.97 to 2.94, p=0.07). Despite the results not reaching
statistical significance, the similarity between the expected and
observed ORs supports a likely causal relationship between
MTHFR and WMH.

Replication of associated genetic variants
We examined the association between CYP11B2T(-344)C and
MTHFR C677T polymorphisms and WMH quantified on the
MRI using a validated, semiautomated volumetric protocol in
an independent cohort of 1202 ischaemic stroke cases with
WMH. There was no association between either polymorphism
and the WMH volume in this cohort (CYP11B2T(-344)C,
P=0.5755; MTHFR C677T, P=0.68).

DISCUSSION
In this largest study to date of candidate genes in WMH
burden, we interrogated 6253 WMH cases and 15 239 controls
for eight polymorphisms in seven genes (APO E/ε4 and ε2, ACE
insertion/deletion, MTHFR C677T, AGT M235T, AGTR1
A1166C, CYP11B2 T344C, PON1 L55M). Our analysis
demonstrated a likely genetic effect for ischaemic white matter
disease, with an apparent inverse association between CYP11B2
and WMH. A trend for positive association between MTHFR
and WMH severity could not be completely interrogated, given
the relatively small sample size of the available studies as com-
pared to other well-powered genetic studies on stroke.

The MTHFR gene is involved in plasma Hcy levels and may
contribute to endothelial dysfunction, which is one of the sug-
gested mechanisms behind WMH.71 While the association
between the MTHFR TT-genotype and WMH fell shy of statis-
tical significance, the totality of the data suggested a trend for
association. The Mendelian randomisation approach allowed us
to investigate any potential relationship between MTHFR and
WMH in more depth and evaluate for potential causality. The
particular strengths of this method are that confounding factors
are equally distributed among genotypes, which facilitates caus-
ality to be tested in their presence, whereas measurement error
bias, reverse causality and selection biases are largely

overcome.72 Using this approach yielded similar values for the
expected and observed OR, and there was considerable overlap
of their 95% CIs. Given that the two values are derived from
meta-analyses of the different study types (genetic association vs
observational)—either of which is prone to a different source of
bias—might be suggestive of a causal association between Hcy
and WMH burden.73 However, this analysis was insufficiently
powered, and future studies using an adequate sample size may
prove more conclusive.

A number of study limitations need to be documented.
Publication bias is always a concern in meta-analysis. However,
funnel plots were produced for each gene-WMH association
and Egger’s regression analysis (two-tailed test) was performed
to assess publication bias. Given that the majority of included
studies reported non-significant results, substantial publication
bias is considered unlikely, although it can never be completely
excluded. Further, of the 78 studies investigating the association
of candidate genes and WMH, just under half did not have
usable data for meta-analysis. It may be that the authors of these
papers did not consider the data to be interesting enough to
report (selective outcome reporting). The vast majority of these
studies found no association and their inclusion would have
strengthened our finding of no relationship between WMH and
any of the studied gene polymorphisms. Some studies reported
data according to a genetic model they had chosen rather than
reporting event rates for each genotype separately, which limited
our ability to incorporate their studies into other genetic
models. There was considerable variation in WMH measure-
ment methods used between studies, which introduces meth-
odological heterogeneity. Assessing WMH using visual rating
scales can be subjective and observer dependent,3 although most
papers reported good inter-rater agreement. The inclusion of
CT and MRI studies adds another source of interstudy hetero-
geneity. CT has been shown to be less sensitive at detecting
WMH and its use may result in an underestimation of the true
WMH load within those studies. However, removal of these
studies did not lead to a substantial change in the pooled OR;
thus, we considered it appropriate to include them. Finally,
results could be confounded by failure to adjust for age, intra-
cranial volume and vascular risk factors in all studies.
Additionally, consideration ought to be given in analyses to the
known WMH risk factors since genes may be exerting their
effect through these factors. The variable disease status of the
study populations could have introduced heterogeneity into our
analysis. For example, six studies in our APO E4 analysis were
conducted in participants with probable or pathologically con-
firmed Alzheimer’s disease.74 75 Combining these studies with
those of asymptomatic participants could have confounded our
results. Finally, a number of covariates which we are not able to
assess because of a lack of complete data sets may influence our
final results.

Despite undertaking, to the best of our knowledge, the largest
meta-analysis to date along with studying a new independent
WMH cohort, the genetics of this condition remains unclear.
Future genetic studies not using an a priori hypothesis may shed
further light on this field.
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